363 research outputs found

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    A Survey of Performance Evaluation and Control for Self-Similar Network Traffic

    Get PDF
    This paper surveys techniques for the recognition and treatment of self-similar network or internetwork traffic. Various researchers have reported traffic measurements that demonstrate considerable burstiness on a range of time scales with properties of self-similarity. Rapid technological development has widened the scope of network and Internet applications and, in turn, increased traffic volume. The exponential growth of the number of servers, as well as the number of users, causes Internet performance to be problematic as a result of the significant impact that long-range dependent traffic has on buffer requirements. Consequently, accurate and reliable measurement, analysis and control of Internet traffic are vital. The most significant techniques for performance evaluation include theoretical analysis, simulation, and empirical study based on measurement. In this research, we discuss existing and recent developments in performance evaluation and control tools used in network traffic engineering

    Towards Finding Efficient Tools for Measuring the Tail Index and Intensity of Long-range Dependent Network Traffic

    Get PDF
    Many researchers have discussed the effects of heavy-tailedness in network traffic patterns and shown that Internet traffic flows exhibit characteristics of self-similarity that can be explained by the heavy-tailedness of the various distributions involved. Self-similarity and heavy-tailedness are of great importance for network capacity planning purposes in which researchers are interested in developing analytical methods for analysing traffic characteristics. Designers of computing and telecommunication systems are increasingly interested in employing heavy-tailed distributions to generate workloads for use in simulation - although simulations employing such workloads may show unusual characteristics. Congested Internet situations, where TCP/IP buffers start to fill, show long-range dependent (LRD) self-similar chaotic behaviour. Such chaotic behaviour has been found to be present in Internet traffic by many researchers. In this context, the 'Hurst exponent', H, is used as a measure of the degree of long-range dependence. Having a reliable estimator can yield a good insight into traffic behaviour and may eventually lead to improved traffic engineering. In this paper, we describe some of the most useful mechanisms for estimating the tail index of Internet traffic, particularly for distributions having the power law observed in different contexts, and also the performance of the estimators for measuring the intensity of LRD traffic in terms of their accuracy and reliability

    Distributed, Secure Load Balancing with Skew, Heterogeneity, and Churn

    Get PDF
    Numerous proposals exist for load balancing in peer-to-peer (p2p) networks. Some focus on namespace balancing, making the distance between nodes as uniform as possible. This technique works well under ideal conditions, but not under those found empirically. Instead, researchers have found heavytailed query distributions (skew), high rates of node join and leave (churn), and wide variation in node network and storage capacity (heterogeneity). Other approaches tackle these less-thanideal conditions, but give up on important security properties. We propose an algorithm that both facilitates good performance and does not dilute security. Our algorithm, k-Choices, achieves load balance by greedily matching nodes’ target workloads with actual applied workloads through limited sampling, and limits any fundamental decrease in security by basing each nodes’ set of potential identifiers on a single certificate. Our algorithm compares favorably to four others in trace-driven simulations. We have implemented our algorithm and found that it improved aggregate throughput by 20% in a widely heterogeneous system in our experiments.Engineering and Applied Science

    Identifying Long-range Dependent Network Traffic through Autocorrelation Functions

    Get PDF
    For over a decade researchers have been reporting the impact of self-similar long-range dependent network traffic. Long-range dependence (LRD) is of great significance in traffic engineering problems such as measurement, queuing strategy, buffer sizing and admission and congestion control. In this research, in order to determine the existence of LRD, we apply three different robust versions of the autocorrelation function (ACF), namely weighted ACF (WACF), trimmed ACF (TACF) and variance-ratio of differences and sums, known as the D/S variance estimator (DACF), in conjunction with the sample ACF (which is moment based). Here we define the moment based ACF as MACF. In telecommunications, LRD traffic defines that a similar pattern of traffic persists for a longer span of time. Through ACF, it is possible to detect how long the traffic lasts. The aim of this research is to investigate the performance of ACF in identifying the existence of LRD traffic

    Towards Finding Efficient Tools for Measuring the Tail Index and Intensity of Long-range Dependent Network Traffic

    Full text link

    Performance Analysis of Transactional Traffic in Mobile Ad-hoc Networks

    Get PDF
    Mobile Ad Hoc networks (MANETs) present unique challenge to new protocol design, especially in scenarios where nodes are highly mobile. Routing protocols performance is essential to the performance of wireless networks especially in mobile ad-hoc scenarios. The development of new routing protocols requires com- paring them against well-known protocols in various simulation environments. The protocols should be analysed under realistic conditions including, but not limited to, representative data transmission models, limited buffer space for data transmission, sensible simulation area and transmission range combination, and realistic moving patterns of the mobiles nodes. Furthermore, application traffic like transactional application traffic has not been investigated for domain-specific MANETs scenarios. Overall, there are not enough performance comparison work in the past literatures. This thesis presents extensive performance comparison among MANETs comparing transactional traffic including both highly-dynamic environment as well as low-mobility cases
    corecore