2,963 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure

    Weakly supervised deep learning for the detection of domain generation algorithms

    Get PDF
    Domain generation algorithms (DGAs) have become commonplace in malware that seeks to establish command and control communication between an infected machine and the botmaster. DGAs dynamically and consistently generate large volumes of malicious domain names, only a few of which are registered by the botmaster, within a short time window around their generation time, and subsequently resolved when the malware on the infected machine tries to access them. Deep neural networks that can classify domain names as benign or malicious are of great interest in the real-time defense against DGAs. In contrast with traditional machine learning models, deep networks do not rely on human engineered features. Instead, they can learn features automatically from data, provided that they are supplied with sufficiently large amounts of suitable training data. Obtaining cleanly labeled ground truth data is difficult and time consuming. Heuristically labeled data could potentially provide a source of training data for weakly supervised training of DGA detectors. We propose a set of heuristics for automatically labeling domain names monitored in real traffic, and then train and evaluate classifiers with the proposed heuristically labeled dataset. We show through experiments on a dataset with 50 million domain names that such heuristically labeled data is very useful in practice to improve the predictive accuracy of deep learning-based DGA classifiers, and that these deep neural networks significantly outperform a random forest classifier with human engineered features
    • …
    corecore