1,816 research outputs found

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    Failure Detection and Isolation by LSTM Autoencoder

    Get PDF
    Failure diagnosis on some system is often preferred even the data of the system is not designed for the condition monitoring and does not contain any or contains little example cases of failures. For this kind of system, it is unrealistic to directly observe condition from single feature or neither to build a machine learning system that has been trained to detect known failures. Still if any data describing the system exists, it is possible to provide some level of diagnosis on the system. Here we present an LSTM (Long Short Term Memory) autoencoder approach for detecting and isolating system failures with insufficient data conditions. Here we also illustrate how the failure isolation capability is effected by the choice of input feature space. The approach is tested with the flight data of F-18 aircraft and the applicability is validated against several leading edge flap (LEF) control surface seizure failures. The method shows a potential for not only detecting a potential failure in advance but also to isolate the failure by allocating the anomaly on the data to the features that are related to the operation of LEFs. The approach presented here provides diagnostic value from the data than is not designed for condition monitoring neither contain any example case failures.acceptedVersionPeer reviewe

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    A Multilabel Approach for Fault Detection and Classification of Transmission Lines using Binary Relevance

    Get PDF
    In Contemporary automation systems, Fault detection and classification of electrical transmission lines in grid systems are given top priority. The broad application of Machine Learning (ML) methods has enabled the substitute of conventional methods of fault identification and classification. These methods are more effective ones that can identify faults early on using a significant quantity of sensory data. So detecting simultaneous failures is difficult in the context of distracting the noise and several faults in the transmission lines. This study contributes by offering a unique way for concurrently detecting and classifying several faults using a multilabel classification approach based on binary relevance classifiers. The proposed binary relevance multilabel detection and classification models’ performances are examined. Under both ideal and problematic circumstances, faults in the dataset are collected. A variety of multilabel fault types detection and classification determines the suggested method’s effectiveness

    Fault Tolerant Control Systems:a Development Method and Real-Life Case Study

    Get PDF

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    A Data-driven Fault Isolation and Identification Scheme for Multiple In-Phase Faults in Satellite Control Moment Gyros

    Get PDF
    A satellite can only complete its mission successfully when all its subsystems, including the attitude control subsystem, are in healthy condition and work properly. Control moment gyroscope is a type of actuator used in the attitude control subsystems of satellites. Any fault in the control moment gyroscope can cause the satellite mission failure if it is not detected, isolated and resolved in-time. Fault isolation provides an opportunity to detect and isolate the occurring faults and, if accompanied by proactive remedial actions, can avoid failure and improve the satellite reliability. It is also necessary to know the fault severity for better maintenance planning and prioritize the corrective actions. This way, the more severe faults can be corrected first. In this work, an enhanced data-driven fault diagnosis scheme is introduced for fault isolation and identification of multiple in-phase faults of satellite control moment gyroscopes that is not addressed in the literature before with high accuracy. The proposed method is based on an optimized support vector machine and an optimized support vector regressor. The results yield fault predictions with up to 95.6% accuracy for isolation and 94.9% accuracy for identification, on average. In addition, a sensitivity analysis with regards to noise, missing values, and missing sensors is done where the results show that the proposed model is robust enough to be used in real applications

    Fault Detection and Diagnostics of Hydraulic Systems in Hydroelectric Power Plants

    Get PDF
    Most hydroelectric power plants experience few faults during their lifetime. However, with the expected increase in volatile energy sources in the energy mix and the use of hydroelectric power plants as balancing mechanisms, the wear and tear on system components may rise. This is where fault detection and diagnosis can significantly improve maintenance regimes. A mechanism within the plant that signals when components are under distress can be both cost-efficient and increase the plant's reliability. The hydraulic system that regulates the flow of water through the turbine is one of those systems that can be affected if the operation of the plants deviates from established norms. This thesis explores the feasibility of creating a model based on features from the Supervisory Control and Data Acquisition (SCADA) system. The algorithm selected for this task is neural networks, specifically, a recurrent neural network (RNN) and long short-term memory (LSTM). The two models are used to predict the guide vane position with the use of input features such as oil level, accumulator temperature, and oil pressure. The RNN model proved to be the most accurate of the two, exhibiting low error rates and high R^2 score. The LSTM model struggled with accurate prediction, showing poor model fit metrics, even with the introduction of L2-regularization. Additionally, an investigation was undertaken into the RNN model's performance on synthetic data with anomalous values, and it revealed a significant decrease in accuracy
    • …
    corecore