3,867 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    A Novel Authentication Method Using Multi-Factor Eye Gaze

    Get PDF
    A method for novel, rapid and robust one-step multi-factor authentication of a user is presented, employing multi-factor eye gaze. The mobile environment presents challenges that render the conventional password model obsolete. The primary goal is to offer an authentication method that competitively replaces the password, while offering improved security and usability. This method and apparatus combine the smooth operation of biometric authentication with the protection of knowledge based authentication to robustly authenticate a user and secure information on a mobile device in a manner that is easily used and requires no external hardware. This work demonstrates a solution comprised of a pupil segmentation algorithm, gaze estimation, and an innovative application that allows a user to authenticate oneself using gaze as the interaction medium

    Confocal microscopy

    Get PDF
    Chapter focusing on confocal microscopy. A confocal microscope is one in which the illumination is confined to a small volume in the specimen, the detection is confined to the same volume and the image is built up by scanning this volume over the specimen, either by moving the beam of light over the specimen or by displacing the specimen relative to a stationary beam. The chief advantage of this type of microscope is that it gives a greatly enhanced discrimination of depth relative to conventional microscopes. Commercial systems appeared in the 1980s and, despite their high cost, the world market for them is probably between 500 and 1000 instruments per annum, mainly because of their use in biomedical research in conjunction with fluorescent labelling methods. There are many books and review articles on this subject ( e.g. Pawley ( 2006) , Matsumoto( 2002), Wilson (1990) ). The purpose of this chapter is to provide an introduction to optical and engineering aspects that may be o f interest to biomedical users of confocal microscopy

    On-screen point-of-regard estimation under natural head movement for a computer with integrated webcam

    Get PDF
    Recent developments in the field of eye-gaze tracking by vidoeoculography indicate a growing interest towards unobtrusive tracking in real-life scenarios, a new paradigm referred to as pervasive eye-gaze tracking. Among the challenges associated with this paradigm, the capability of a tracking platform to integrate well into devices with in-built imaging hardware and to permit natural head movement during tracking is of importance in less constrained scenarios. The work presented in this paper builds on our earlier work, which addressed the problem of estimating on-screen point-of-regard from iris center movements captured by an integrated camera inside a notebook computer, by proposing a method to approximate the head movements in conjunction with the iris movements in order to alleviate the requirement for a stationary head pose. Following iris localization by an appearance-based method, linear mapping functions for the iris and head movement are computed during a brief calibration procedure permitting the image information to be mapped to a point-of-regard on the monitor screen. Following the calculation of the point-of-regard as a function of the iris and head movement, separate Kalman filters improve upon the noisy point-of-regard estimates to smoothen the trajectory of the mouse cursor on the monitor screen. Quantitative and qualitative results obtained from two validation procedures reveal an improvement in the estimation accuracy under natural head movement, over our previous results achieved from earlier work.peer-reviewe

    PROTECT: pervasive and useR fOcused biomeTrics bordEr projeCT. A Case Study

    Get PDF
    PROTECT: Pervasive and useR fOcused biomeTrics bordEr projeCT is an EU project funded by the Horizon 2020 research and Innovation Programme. The main aim of PROTECT was to build an advanced biometric-based person identification system that works robustly across a range of border crossing types and that has strong user-centric features. This work presents the case study of the multibiometric verification system developed within PROTECT. The system has been developed to be suitable for different borders such as air, sea, and land borders. The system covers two use cases: the walk-through scenario, in which the traveller is on foot; the drive-through scenario, in which the traveller is in a vehicle. Each deployment includes a different set of biometric traits and this paper illustrates how to evaluate such multibiometric system in accordance with international standards and, in particular, how to overcome practical problems that may be encountered when dealing with multibiometric evaluation, such as different score distributions and missing scores

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Study of the light’s dazzling effect on the EEG signal of subjects performing tasks that require concentration

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2019The objective of this work is to study the effect of luminous glare on the electroencephalographic (EEG) signals of subjects that perform concentration-based tasks. The increasing access to high-power and directional light sources (such as laser pointers, but also some flashlights) has led to a growing concern with the potential effects of its use. More than the direct damaging of the retina, the focus has been directed at the effects related to the change in states of concentration on individuals performing tasks whose concentration is critical (such as helicopter pilots or heavy vehicles drivers). This effect is known as ”dazzling” and is typically a temporary deleterious effect on the ability to see or concentrate. However, while damage to the retina can be quantified, glare effects, being indirect (based on the effect on the execution of a given task), are typically qualitative (or at least of more subjective quantification). In this context, the use of brain-computer interfaces capable of analyzing the brain response to external stimuli, opens a door towards the creation of a new tool to evaluate the effects of dazzle. Its potential was evaluated by defining a set of strategies involving the illumination process, EEG signal recording and analysis. A continuous performance task commonly used as an assessment in cognitive neuroscience (N-back) was used to test the attention under the effect of dazzling, in parallel with EEG signals acquisition. Statistical data analysis was performed with the R programming language. ANOVA statistical significant results (p<0.001) for answer scores and latency were obtained for differences between the levels of difficulty, both with or without dazzling. Tukey’s test further revealed that these statistical differences were on the 0-back/2-back and 1-back/2-back pairs (p<0.005). The differences in the pair 0-back/1-back were not significant. Peak band frequency statistical tests were not significant with or without dazzling. Statistical differences were found between dazzling conditions for the frequency band power. For the 0-back and 1-back levels, with the AF7-Fp1 electrode pair, T-student tests resulted in an alpha band frequency power increase (p<0.003, in both cases). The electrode pair AF8-Fp2 resulted in an alfa and beta frequency band increase for the 1-back level (p<0.014 and p<0.029, respectively). These results suggest that concentration is affected by dazzling and can be quantified by means of measuring the change in alpha and beta frequency band power. This technique holds potential and, if further researched and developed, may constitute an effective way of measuring the degree of loss of concentration under the effect of dazzling
    corecore