1,305 research outputs found

    Genuine Forgery Signature Detection using Radon Transform and K-Nearest Neighbour

    Get PDF
    Authentication is very much essential in managing security. In modern times, it is one in all priorities. With the advent of technology, dialogue with machines becomes automatic. As a result, the need for authentication for a variety of security purposes is rapidly increasing. For this reason, biometrics-based certification is gaining dramatic momentum. The proposed method describes an off-line Genuine/ Forgery signature classification system using radon transform and K-Nearest Neighbour classifier. Every signature features are extracted by radon transform and they are aligned to get the statistic information of his signature. To align the two signatures, the algorithm used is Extreme Points Warping. Many forged and genuine signatures are selected in K-Nearest Neighbour classifier training. By aligning the test signature with each and every reference signatures of the user, verification of test signature is done. Then the signature can be found whether it is genuine or forgery. A K-Nearest Neighbour is used for classification for the different datasets. The result determines how the proposed procedure is exceeds the current state-of-the-art technology. Approximately, the proposed system’s performance is 90 % in signature verification system

    Optical scattering for security applications

    No full text
    Laser Surface Authentication (LSA) has emerged in recent years as a potentially disruptive tracking and authentication technology. A strong need for such a solution in a variety of industries drove the implementation of the technology faster than the scientific understanding could keep up. The drive to miniaturise and simplify, the need to be robust against real-world problems like damage and misuse, and not least, intellectual curiosity, make it clear that a firmer scientific footing is important as the technology matures. Existing scattering and biometric work are reviewed, and LSA is introduced as a technology. The results of field-work highlight the restrictions which are encountered when the technology is applied. Analysis of the datasets collected in the trial provide, first, an indication of the performance of LSA under real-world conditions and, second, insight into the potential shortcomings of the technique. Using the particulars of the current sensor’s geometry, the LSA signal is characterised. Measurements are made of the decorrelation of the signature with linear and rotational offsets, and it is concluded that while surface microstructure has a strong impact on the rate of decorrelation, this dependency is not driven by the surface’s feature size. A new series of experiments examine that same decorrelation for interference effects with different illumination conditions, and conclude that laser speckle is not an adequate explanation for the phenomenon. The results of this experimental work inform a mathematical description of LSA based on a combination of existing bi-static scattering models used in physics and ray-tracing, which is implemented numerically. The results of the model are found to be a good fit to experimental work, and new predictions are made about LSA

    A Telescope Search for Decaying Relic Axions

    Get PDF
    A search for optical line emission from the two-photon decay of relic axions was conducted in the galaxy clusters Abell 2667 and 2390, using spectra from the VIMOS (Visible Multi-Object Spectrograph) integral field unit at the Very Large Telescope. New upper limits to the two-photon coupling of the axion are derived, and are at least a factor of 3 more stringent than previous upper limits in this mass window. The improvement follows from larger collecting area, integration time, and spatial resolution, as well as from improvements in signal to noise and sky subtraction made possible by strong-lensing mass models of these clusters. The new limits either require that the two-photon coupling of the axion be extremely weak or that the axion mass window between 4.5 eV and 7.7 eV be closed. Implications for sterile-neutrino dark matter are discussed briefly also.Comment: 14 pages, 10 figures, replaced with version published in Phys. Rev.

    Stellar Intensity Interferometry: Prospects for sub-milliarcsecond optical imaging

    Full text link
    Using kilometric arrays of air Cherenkov telescopes, intensity interferometry may increase the spatial resolution in optical astronomy by an order of magnitude, enabling images of rapidly rotating stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes with very fast detectors are becoming available as arrays of air Cherenkov telescopes, distributed over a few square km. Digital signal handling enables very many baselines to be synthesized, while stars are tracked with electronic time delays, thus synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v)=8, reaching resolutions ~30 microarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason image reconstruction requires phase retrieval techniques, feasible if sufficient coverage of the interferometric (u,v)-plane is available. Experiments are in progress; test telescopes have been erected, and trials in connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.Comment: New Astronomy Reviews, in press; 101 pages, 11 figures, 185 reference

    Challenges of Public Housing in a Democratic Nigeria: a Case Study of the Presidential Mandate Housing Scheme

    Get PDF
    This study examined the challenges of public housing in a democratic Nigeria using the Presidential Mandate Housing Scheme as a case study. Data were derived from purposively selected members of staff of public institutions charged with the responsibility of implementing this scheme in urban areas of Southern Nigeria through interview enquiries and participant observation. These were analyzed using content analysis. The result shows that the scheme was implemented in very few States in Southern part of Nigeria with miniscule number of housing units constructed in those States. Poor programme conception and planning, funding inadequacies and the dearth of preferred building materials were identified as the key challenges that led to the failure of this scheme. The paper argues that despite the return of democratic rule in 1999 and subsequent adoption of the New National Housing and Urban Development Policy in 2002, low organizational capacity of public housing agencies, the lack of collaborations between these agencies and private sector organizations and the none availability of reliable local building materials constitute serious impediments to smooth and successful implementation of public housing programmes in Nigeria. It therefore suggests that the prospects of public housing in democratic Nigeria are contingent upon addressing these challenge

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about
    • …
    corecore