29,826 research outputs found

    Long cycles in graphs with large degree sums and neighborhood unions

    Get PDF
    We present and prove several results concerning the length of longest cycles in 2-connected or 1-tough graphs with large degree sums. These results improve many known results on long cycles in these graphs. We also consider the sharpness of the results and discuss some possible strengthenings

    Relative length of long paths and cycles in graphs with large degree sums

    Get PDF
    For a graph G, p(G) denotes the order of a longest path in G and c(G) the order of a longest cycle. We show that if G is a connected graph n ≥ 3 vertices such that d(u) + d(v) + d(w) n for all triples u, v, w of independent vertices, then G satisfies c(G) ≥ p(G) - 1, or G is in one of six families of exceptional graphs. This generalizes results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs

    A note on dominating cycles in 2-connected graphs

    Get PDF
    Let G be a 2-connected graph on n vertices such that d(x) + d(y) + d(z) n for all triples of independent vertices x, y, z. We prove that every longest cycle in G is a dominating cycle unless G is a spanning subgraph of a graph belonging to one of four easily specified classes of graphs

    Exchangeable pairs, switchings, and random regular graphs

    Full text link
    We consider the distribution of cycle counts in a random regular graph, which is closely linked to the graph's spectral properties. We broaden the asymptotic regime in which the cycle counts are known to be approximately Poisson, and we give an explicit bound in total variation distance for the approximation. Using this result, we calculate limiting distributions of linear eigenvalue functionals for random regular graphs. Previous results on the distribution of cycle counts by McKay, Wormald, and Wysocka (2004) used the method of switchings, a combinatorial technique for asymptotic enumeration. Our proof uses Stein's method of exchangeable pairs and demonstrates an interesting connection between the two techniques.Comment: Very minor changes; 23 page
    • …
    corecore