26,409 research outputs found

    Long cycles in 4-connected planar graphs

    Get PDF
    AbstractLet G be a 4-connected planar graph on n vertices. Malkevitch conjectured that if G contains a cycle of length 4, then G contains a cycle of length k for every k∈{n,n−1,…,3}. This conjecture is true for every k∈{n,n−1,…,n−6} with k≥3. In this paper, we prove that G also has a cycle of length n−7 provided n≥10

    Computing Tutte Paths

    Get PDF
    Tutte paths are one of the most successful tools for attacking problems on long cycles in planar graphs. Unfortunately, results based on them are non-constructive, as their proofs inherently use an induction on overlapping subgraphs and these overlaps prevent any attempt to bound the running time by a polynomial. For special cases however, computational results of Tutte paths are known: For 4-connected planar graphs, Tutte paths are in fact Hamiltonian paths and Chiba and Nishizeki [N. Chiba and T. Nishizeki, 1989] showed how to compute such paths in linear time. For 3-connected planar graphs, Tutte paths have a significantly more complicated structure, and it has only recently been shown that they can be computed in polynomial time [A. Schmid and J. M. Schmidt, 2015]. However, Tutte paths are defined for general 2-connected planar graphs and this is what most applications need. In this unrestricted setting, no computational results for Tutte paths are known. We give the first efficient algorithm that computes a Tutte path (in this unrestricted setting). One of the strongest existence results about such Tutte paths is due to Sanders [D. P. Sanders, 1997], which allows one to prescribe the end vertices and an intermediate edge of the desired path. Encompassing and strengthening all previous computational results on Tutte paths, we show how to compute such a special Tutte path efficiently. Our method refines both, the existence results of Thomassen [C. Thomassen, 1983] and Sanders [D. P. Sanders, 1997], and avoids that the subgraphs arising in the inductive proof intersect in more than one edge by using a novel iterative decomposition along 2-separators. Finally, we show that our algorithm runs in time O(n^2)

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual G∗G^* is a cubic 3-connected planar graph, and G∗G^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then G∗G^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then G∗G^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure

    Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

    Get PDF
    We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let H be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of H are at least a specified distance apart and all triangles of G are contained in \bigcup{H}. We give a sufficient condition for the existence of a 3-coloring phi of G such that for every B\in H, the restriction of phi to B is constrained in a specified way.Comment: 26 pages, no figures. Updated presentatio
    • …
    corecore