777 research outputs found

    Quantum stabilizer codes and beyond

    Get PDF
    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.Comment: Ph.D. Dissertation, Texas A&M University, 200

    A Comparison Study of LDPC and BCH Codes

    Get PDF
    The need for efficient and reliable digital data communication systems has been rising rapidly in recent years. There are various reasons that have brought this need for the communication systems, among them are the increase in automatic data processing equipment and the increased need for long range communication. Therefore, the LDPC and BCH codes were developed for achieving more reliable data transmission in communication systems. This project covers the research about the LDPC and BCH error correction codes. Algorithm for simulating both the LDPC and BCH codes were also being investigated, which includes generating the parity check matrix, generating the message code in Galois array matrix, encoding the message bits, modulation and decoding the message bits for LDPC. Matlab software is used for encoding and decoding the codes. The percentage of accuracy for LDPC simulation codes are ranging from 95% to 99%. The results obtained shows that the LDPC codes are more efficient and reliable than the BCH codes coding method of error correction because the LDPC codes had a channel performance very close to the Shannon limit. LDPC codes are a class of linear block codes that are proving to be the best performing forward error correction available. Markets such as broadband wireless and mobile networks operate in noisy environments and need powerful error correction in order to improve reliability and better data rates. Through LDPC and BCH codes, these systems can operate more reliably, efficiently and at higher data rates

    PERFORMANCE COMPARISON OF NON-INTERLEAVED BCH CODES AND INTERLEAVED BCH CODES

    Get PDF
    This project covers the research about the BCH error correcting codes and the performance of interleaved and non-interleaved BCH codes. Both long and short BCH codes for multimedia communication are examined in an A WGN channel. Algorithm for simulating the BCH codes was also being investigated, which includes generating the parity check matrix, generating the message code in Galois array matrix, encoding the message blocks, modulation and decoding the message blocks. Algorithm for interleaving that includes interleaving message, including burst errors and deinterleaving message is combined with the BCH codes algorithm for simulating the interleaved BCH codes. The performance and feasibility of the coding structure are tested. The performance comparison between interleaved and noninterleaved BCH codes is studied in terms of error performance, channel performance and effect of data rates on the bit error rate (BER). The Berlekamp-Massey Algorithm decoding scheme was implemented. Random integers are generated and encoded with BCH encoder. Burst errors are added before the message is interleaved, then enter modulation and channel simulation. Interleaved message is then compared with noninterleaved message and the error statistics are compared. Initially, certain amount of burst errors is used. "ft is found that the graph does not agree with the theoretical bit error rate (BER) versus signal-to-noise ratio (SNR). When compared between each BCH codeword (i.e. n = 31, n = 63 and n = 127), n = 31 shows the highest BER while n = 127 shows the lowest BER. This happened because of the occurrence of error bursts and also due to error frequency. A reduced size or errors from previous is used in the algorithm. A graph similar to the theoretical BER vs SNR is obtained for both interleaved and non-interleaved BCH codes. It is found that BER of non-interleaved is higher than interleaved BCH codes as SNR increases. These observations show that size of errors influence the effect of interleaving. Simulation time is also studied in terms of block length. It is found that interleaved BCH codes consume longer simulation time compared to non-interleaved BCH codes due to additional algorithm for the interleaved BCH codes

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar
    • ā€¦
    corecore