5,174 research outputs found

    Changes in cardiac repolarisation during hypoglycaemia in type 1 diabetes

    Get PDF

    Autonomic cardiac regulation during spontaneous nocturnal hypoglycemia in children with type 1 diabetes

    Get PDF
    Hypoglycemia is the most common complication in insulin treated diabetes. Though mostly mild, it can be fatal in rare cases: It is hypothesized that hypoglycemia related QTc prolongation contributes to cardiac arrhythmia.; To evaluate influence of nocturnal hypoglycemia on QTc and heart rate variability (HRV) in children with T1D.; Children and adolescents with T1D for at least 6 months participated in an observational study using continuous glucose monitoring (CGM) and Holter electrocardiogram for five consecutive nights. Mean QTc was calculated for episodes of nocturnal hypoglycemia (<3.7 mmol/L) and compared to periods of the same duration preceding hypoglycemia. HRV (RMSSD, low and high frequency power LF and HF) was analyzed for different 15 min intervals: before hypoglycemia, onset of hypoglycemia, before/after nadir, end of hypoglycemia and after hypoglycemia.; Mean QTc during hypoglycemia was significantly longer compared to euglycemia (412 ± 15 vs. 405 ± 18 ms, p = 0.005). HRV changed significantly: RMSSD (from 88 ± 57 to 73 ± 43 ms) and HF (from 54 ± 17 to 47 ± 17nu) decreased from before hypoglycemia to after nadir, while heart rate (from 69 ± 9 to 72 ± 12 bpm) and LF (from 44 ± 17 to 52 ± 21 nu) increased (p = 0.04).; A QTc lengthening effect of nocturnal hypoglycemia in children with T1D was documented. HRV changes occurred even before detection of nocturnal hypoglycemia by CGM, which may be useful for hypoglycemia prediction

    Effects of sport-specific, intermittent high-intensity exercise on nocturnal heart rate variability and glycemia in elite athletes with type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) is associated with hypoglycemia and premature autonomic disturbance (using heart rate variability [HRV]) - both which have been implicated in sudden death. This study examined the effect of a single bout of intermittent high-intensity exercise (IHE) on nocturnal HRV in ten hockey players with T1D and ten teammates without T1D. HRV and BG were analyzed from 12am-6am following hockey activity and low activity days. Hockey-type IHE on a cycle ergometer decreased BG by -1.9 ± 2.8 mmol/L, while an actual hockey game increased BG by 1.0 ± 3.2 mmol/L. One participant experienced nocturnal hypoglycemia after a hockey game (lasting 230 min). A significantly better nocturnal HRV profile (QTc, SDNN, pNN50, RMSSD) was observed following the low activity day compared to the days where IHE took place (p<0.05). There was no difference in HRV between T1D and non-T1D participants. This study documented the unique ability of a hockey game to increase BG in youth with T1D. Furthermore, given that decreased HRV is commonly noted in youth with T1D, this study suggests that the onset of autonomic hindrances can be delayed in highly-active individuals

    Dysglycemia and arrhythmias

    Get PDF
    Disorders in glucose metabolism can be divided into three separate but interrelated domains, namely hyperglycemia, hypoglycemia, and glycemic variability. Intensive glycemic control in patients with diabetes might increase the risk of hypoglycemic incidents and glucose fluctuations. These three dysglycemic states occur not only amongst patients with diabetes, but are frequently present in other clinical settings, such as during critically ill. A growing body of evidence has focused on the relationships between these dysglycemic domains with cardiac arrhythmias, including supraventricular arrhythmias (primarily atrial fibrillation), ventricular arrhythmias (malignant ventricular arrhythmias and QT interval prolongation), and bradyarrhythmias (bradycardia and heart block). Different mechanisms by which these dysglycemic states might provoke cardiac arr-hythmias have been identified in experimental studies. A customized glycemic control strategy to minimize the risk of hyperglycemia, hypoglycemia and glucose variability is of the utmost importance in order to mitigate the risk of cardiac arrhythmias

    QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESCWorking Group on Cardiac Cellular Electrophysiology

    Get PDF
    This consensus guideline discusses the electrocardiographic phenomenon of beat-to-beat QT interval variability (QTV) on surface electrocardiograms. The text covers measurement principles, physiological basis, and clinical value of QTV. Technical considerations include QT interval measurement and the relation between QTV and heart rate variability. Research frontiers of QTV include understanding of QTV physiology, systematic evaluation of the link between QTV and direct measures of neural activity, modelling of the QTV dependence on the variability of other physiological variables, distinction between QTV and general T wave shape variability, and assessing of the QTV utility for guiding therapy. Increased QTV appears to be a risk marker of arrhythmic and cardiovascular death. It remains to be established whether it can guide therapy alone or in combination with other risk factors. QT interval variability has a possible role in non-invasive assessment of tonic sympathetic activity

    Increased Short-Term Beat-To-Beat Variability of QT Interval in Patients with Acromegaly.

    Get PDF
    Cardiovascular diseases, including ventricular arrhythmias are responsible for increased mortality in patients with acromegaly. Acromegaly may cause repolarization abnormalities such as QT prolongation and impairment of repolarization reserve enhancing liability to arrhythmia. The aim of this study was to determine the short-term beat-to-beat QT variability in patients with acromegaly. Thirty acromegalic patients (23 women and 7 men, mean age+/-SD: 55.7+/-10.4 years) were compared with age- and sex-matched volunteers (mean age 51.3+/-7.6 years). Cardiac repolarization parameters including frequency corrected QT interval, PQ and QRS intervals, duration of terminal part of T waves (Tpeak-Tend) and short-term variability of QT interval were evaluated. All acromegalic patients and controls underwent transthoracic echocardiographic examination. Autonomic function was assessed by means of five standard cardiovascular reflex tests. Comparison of the two groups revealed no significant differences in the conventional ECG parameters of repolarization (QT: 401.1+/-30.6 ms vs 389.3+/-16.5 ms, corrected QT interval: 430.1+/-18.6 ms vs 425.6+/-17.3 ms, QT dispersion: 38.2+/-13.2 ms vs 36.6+/-10.2 ms; acromegaly vs control, respectively). However, short-term beat-to-beat QT variability was significantly increased in acromegalic patients (4.23+/-1.03 ms vs 3.02+/-0.80, P<0.0001). There were significant differences between the two groups in the echocardiographic dimensions (left ventricular end diastolic diameter: 52.6+/-5.4 mm vs 48.0+/-3.9 mm, left ventricular end systolic diameter: 32.3+/-5.2 mm vs 29.1+/-4.4 mm, interventricular septum: 11.1+/-2.2 mm vs 8.8+/-0.7 mm, posterior wall of left ventricle: 10.8+/-1.4 mm vs 8.9+/-0.7 mm, P<0.05, respectively). Short-term beat-to-beat QT variability was elevated in patients with acromegaly in spite of unchanged conventional parameters of ventricular repolarization. This enhanced temporal QT variability may be an early indicator of increased liability to arrhythmia

    Advances in Electrocardiograms

    Get PDF
    Electrocardiograms have become one of the most important, and widely used medical tools for diagnosing diseases such as cardiac arrhythmias, conduction disorders, electrolyte imbalances, hypertension, coronary artery disease and myocardial infarction. This book reviews recent advancements in electrocardiography. The four sections of this volume, Cardiac Arrhythmias, Myocardial Infarction, Autonomic Dysregulation and Cardiotoxicology, provide comprehensive reviews of advancements in the clinical applications of electrocardiograms. This book is replete with diagrams, recordings, flow diagrams and algorithms which demonstrate the possible future direction for applying electrocardiography to evaluating the development and progression of cardiac diseases. The chapters in this book describe a number of unique features of electrocardiograms in adult and pediatric patient populations with predilections for cardiac arrhythmias and other electrical abnormalities associated with hypertension, coronary artery disease, myocardial infarction, sleep apnea syndromes, pericarditides, cardiomyopathies and cardiotoxicities, as well as innovative interpretations of electrocardiograms during exercise testing and electrical pacing

    NONINVASIVE ASSESSMENT AND MODELING OF DIABETIC CARDIOVASCULAR AUTONOMIC NEUROPATHY

    Get PDF
    Noninvasive assessment of diabetic cardiovascular autonomic neuropathy (AN): Cardiac and vascular dysfunctions resulting from AN are complications of diabetes, often undiagnosed. Our objectives were to: 1) determine sympathetic and parasympathetic components of compromised blood pressure regulation in patients with polyneuropathy, and 2) rank noninvasive indexes for their sensitivity in diagnosing AN. Continuous 12-lead electrocardiography (ECG), blood pressure (BP), respiration, regional blood flow and bio-impedance were recorded from 12 able-bodied subjects (AB), 7 diabetics without (D0), 7 with possible (D1) and 8 with definite polyneuropathy (D2), during 10 minutes supine control, 30 minutes 70-degree head-up tilt and 5 minutes supine recovery. During the first 3 minutes of tilt, systolic BP decreased in D2 while increased in AB. Parasympathetic control of heart rate, baroreflex sensitivity, and baroreflex effectiveness and sympathetic control of heart rate and vasomotion were reduced in D2, compared with AB. Baroreflex effectiveness index was identified as the most sensitive index to discriminate diabetic AN. Four-dimensional multiscale modeling of ECG indexes of diabetic autonomic neuropathy: QT interval prolongation which predicts long-term mortality in diabetics with AN, is well known. The mechanism of QT interval prolongation is still unknown, but correlation of regional sympathetic denervation of the heart (revealed by cardiac imaging) with QT interval in 12-lead ECG has been proposed. The goal of this study is to 1) reproduce QT interval prolongation seen in diabetics, and 2) develop a computer model to link QT interval prolongation to regional cardiac sympathetic denervation at the cellular level. From the 12-lead ECG acquired in the study above, heart rate-corrected QT interval (QTc) was computed and a reduced ionic whole heart mathematical model was constructed. Twelve-lead ECG was produced as a forward solution from an equivalent cardiac source. Different patterns of regional denervation in cardiac images of diabetic patients guided the simulation of pathological changes. Minimum QTc interval of lateral leads tended to be longer in D2 than in AB. Prolonging action potential duration in the basal septal region in the model produced ECG and QT interval similar to that of D2 subjects, suggesting sympathetic denervation in this region in patients with definite neuropathy
    corecore