200 research outputs found

    Classical and Quantum Mechanical Models of Many-Particle Systems

    Get PDF
    The topic of this meeting were non-linear partial differential and integro-differential equations (in particular kinetic equations and their macroscopic/fluid-dynamical limits) modeling the dynamics of many-particle systems with applications in physics, engineering, and mathematical biology. Typical questions of interest were the derivation of macro-models from micro-models, the mathematical analysis (well-posedness, stability, asymptotic behavior of solutions), and –to a lesser extend– numerical aspects of such equations

    Mathematical Aspects of General Relativity (hybrid meeting)

    Get PDF
    General relativity is an area that naturally combines differential geometry, partial differential equations, global analysis and dynamical systems with astrophysics, cosmology, high energy physics, and numerical analysis. It is rapidly expanding and has witnessed remarkable developments in recent years

    A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

    Full text link
    We propose a positivity preserving entropy decreasing finite volume scheme for nonlinear nonlocal equations with a gradient flow structure. These properties allow for accurate computations of stationary states and long-time asymptotics demonstrated by suitably chosen test cases in which these features of the scheme are essential. The proposed scheme is able to cope with non-smooth stationary states, different time scales including metastability, as well as concentrations and self-similar behavior induced by singular nonlocal kernels. We use the scheme to explore properties of these equations beyond their present theoretical knowledge

    Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory

    Get PDF
    We derive an asymptotic formula for the amplitude distribution in a fully nonlinear shallow-water solitary wave train which is formed as the long-time outcome of the initial-value problem for the Su-Gardner (or one-dimensional Green-Naghdi) system. Our analysis is based on the properties of the characteristics of the associated Whitham modulation system which describes an intermediate "undular bore" stage of the evolution. The resulting formula represents a "non-integrable" analogue of the well-known semi-classical distribution for the Korteweg-de Vries equation, which is usually obtained through the inverse scattering transform. Our analytical results are shown to agree with the results of direct numerical simulations of the Su-Gardner system. Our analysis can be generalised to other weakly dispersive, fully nonlinear systems which are not necessarily completely integrable.Comment: 25 pages, 7 figure

    Twenty-eight years with “Hyperbolic Conservation Laws with Relaxation”

    Get PDF
    This paper is a review on the results inspired by the publication “Hyperbolic conservation laws with relaxation” by Tai-Ping Liu [1], with emphasis on the topic of nonlinear waves (specifically, rarefaction and shock waves). The aim is twofold: firstly, to report in details the impact of the article on the subsequent research in the area; secondly, to detect research trends which merit attention in the (near) future

    Burgers Turbulence

    Full text link
    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.Comment: Review Article, 49 pages, 43 figure
    • …
    corecore