383 research outputs found

    Degrees and distances in random and evolving Apollonian networks

    Get PDF
    This paper studies Random and Evolving Apollonian networks (RANs and EANs), in d dimension for any d>=2, i.e. dynamically evolving random d dimensional simplices looked as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power law tail with exponent tau=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the n-th step of the dynamics is q_n->0 and sum_{n=0}^infty q_n =infty. This result gives a rigorous proof for the conjecture of Zhang et al. that EANs tend to show similar behavior as RANs once the occupation parameter q->0. We also determine the asymptotic behavior of shortest paths in RANs and EANs for arbitrary d dimensions. For RANs we show that the shortest path between two uniformly chosen vertices (typical distance), the flooding time of a uniformly picked vertex and the diameter of the graph after n steps all scale as constant times log n. We determine the constants for all three cases and prove a central limit theorem for the typical distances. We prove a similar CLT for typical distances in EANs

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    Characterizing the network topology of the energy landscapes of atomic clusters

    Full text link
    By dividing potential energy landscapes into basins of attractions surrounding minima and linking those basins that are connected by transition state valleys, a network description of energy landscapes naturally arises. These networks are characterized in detail for a series of small Lennard-Jones clusters and show behaviour characteristic of small-world and scale-free networks. However, unlike many such networks, this topology cannot reflect the rules governing the dynamics of network growth, because they are static spatial networks. Instead, the heterogeneity in the networks stems from differences in the potential energy of the minima, and hence the hyperareas of their associated basins of attraction. The low-energy minima with large basins of attraction act as hubs in the network.Comparisons to randomized networks with the same degree distribution reveals structuring in the networks that reflects their spatial embedding.Comment: 14 pages, 11 figure

    Exploring the origins of the power-law properties of energy landscapes: An egg-box model

    Full text link
    Multidimensional potential energy landscapes (PELs) have a Gaussian distribution for the energies of the minima, but at the same time the distribution of the hyperareas for the basins of attraction surrounding the minima follows a power-law. To explore how both these features can simultaneously be true, we introduce an ``egg-box'' model. In these model landscapes, the Gaussian energy distribution is used as a starting point and we examine whether a power-law basin area distribution can arise as a natural consequence through the swallowing up of higher-energy minima by larger low-energy basins when the variance of this Gaussian is increased sufficiently. Although the basin area distribution is substantially broadened by this process,it is insufficient to generate power-laws, highlighting the role played by the inhomogeneous distribution of basins in configuration space for actual PELs.Comment: 7 pages, 8 figure

    Locating the Source of Diffusion in Large-Scale Networks

    Get PDF
    How can we localize the source of diffusion in a complex network? Due to the tremendous size of many real networks--such as the Internet or the human social graph--it is usually infeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely-placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N^{\alpha}), where \alpha=1 for arbitrary trees, and \alpha=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.Comment: To appear in Physical Review Letters. Includes pre-print of main paper, and supplementary materia
    • …
    corecore