37 research outputs found

    Cryptarray A Scalable And Reconfigurable Architecture For Cryptographic Applications

    Get PDF
    Cryptography is increasingly viewed as a critical technology to fulfill the requirements of security and authentication for information exchange between Internet applications. However, software implementations of cryptographic applications are unable to support the quality of service from a bandwidth perspective required by most Internet applications. As a result, various hardware implementations, from Application-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs), to programmable processors, were proposed to improve this inadequate quality of service. Although these implementations provide performances that are considered better than those produced by software implementations, they still fall short of addressing the bandwidth requirements of most cryptographic applications in the context of the Internet for two major reasons: (i) The majority of these architectures sacrifice flexibility for performance in order to reach the performance level needed for cryptographic applications. This lack of flexibility can be detrimental considering that cryptographic standards and algorithms are still evolving. (ii) These architectures do not consider the consequences of technology scaling in general, and particularly interconnect related problems. As a result, this thesis proposes an architecture that attempts to address the requirements of cryptographic applications by overcoming the obstacles described in (i) and (ii). To this end, we propose a new reconfigurable, two-dimensional, scalable architecture, called CRYPTARRAY, in which bus-based communication is replaced by distributed shared memory communication. At the physical level, the length of the wires will be kept to a minimum. CRYPTARRAY is organized as a chessboard in which the dark and light squares represent Processing Elements (PE) and memory blocks respectively. The granularity and resource composition of the PEs is specifically designed to support the computing operations encountered in cryptographic algorithms in general, and symmetric algorithms in particular. Communication can occur only between neighboring PEs through locally shared memory blocks. Because of the chessboard layout, the architecture can be reconfigured to allow computation to proceed as a pipelined wave in any direction. This organization offers a high computational density in terms of datapath resources and a large number of distributed storage resources that easily support a high degree of parallelism and pipelining. Experimental prototyping a small array on FPGA chips shows that this architecture can run at 80.9 MHz producing 26,968,716 outputs every second in static reconfiguration mode and 20,226,537 outputs every second in dynamic reconfiguration mode

    Comparison of Scalable Montgomery Modular Multiplication Implementations Embedded in Reconfigurable Hardware

    No full text
    International audienceThis paper presents a comparison of possible approaches for an efficient implementation of Multiple-word radix-2 Montgomery Modular Multiplication (MM) on modern Field Programmable Gate Arrays (FPGAs). The hardware implementation of MM coprocessor is fully scalable what means that it can be reused in order to generate long-precision results independently on the word length of the originally proposed coprocessor. The first of analyzed implementations uses a data path based on traditionally used redundant carry-save adders, the second one exploits, in scalable designs not yet applied, standard carry-propagate adders with fast carry chain logic. As a control unit and a platform for purely software implementation an embedded soft-core processor Altera NIOS is employed. All implementations use large embedded memory blocks available in recent FPGAs. Speed and logic requirements comparisons are performed on the optimized software and combined hardware-software designs in Altera FPGAs. The issues of targeting a design specifically for a FPGA are considered taking into account the underlying architecture imposed by the target FPGA technology. It is shown that the coprocessors based on carry-save adders and carry-propagate adders provide comparable results in constrained FPGA implementations but in case of carry-propagate logic, the solution requires less embedded memory and provides some additional implementation advantages presented in the paper

    Montgomery and RNS for RSA Hardware Implementation

    Get PDF
    There are many architectures for RSA hardware implementation which improve its performance. Two main methods for this purpose are Montgomery and RNS. These are fast methods to convert plaintext to ciphertext in RSA algorithm with hardware implementation. RNS is faster than Montgomery but it uses more area. The goal of this paper is to compare these two methods based on the speed and on the used area. For this purpose the architecture that has a better performance for each method is selected, and some modification is done to enhance their performance. This comparison can be used to select the proper method for hardware implementation in both FPGA and ASIC design

    A high-speed integrated circuit with applications to RSA Cryptography

    Get PDF
    Merged with duplicate record 10026.1/833 on 01.02.2017 by CS (TIS)The rapid growth in the use of computers and networks in government, commercial and private communications systems has led to an increasing need for these systems to be secure against unauthorised access and eavesdropping. To this end, modern computer security systems employ public-key ciphers, of which probably the most well known is the RSA ciphersystem, to provide both secrecy and authentication facilities. The basic RSA cryptographic operation is a modular exponentiation where the modulus and exponent are integers typically greater than 500 bits long. Therefore, to obtain reasonable encryption rates using the RSA cipher requires that it be implemented in hardware. This thesis presents the design of a high-performance VLSI device, called the WHiSpER chip, that can perform the modular exponentiations required by the RSA cryptosystem for moduli and exponents up to 506 bits long. The design has an expected throughput in excess of 64kbit/s making it attractive for use both as a general RSA processor within the security function provider of a security system, and for direct use on moderate-speed public communication networks such as ISDN. The thesis investigates the low-level techniques used for implementing high-speed arithmetic hardware in general, and reviews the methods used by designers of existing modular multiplication/exponentiation circuits with respect to circuit speed and efficiency. A new modular multiplication algorithm, MMDDAMMM, based on Montgomery arithmetic, together with an efficient multiplier architecture, are proposed that remove the speed bottleneck of previous designs. Finally, the implementation of the new algorithm and architecture within the WHiSpER chip is detailed, along with a discussion of the application of the chip to ciphering and key generation

    Hardware Aspects of Montgomery Modular Multiplication

    Get PDF
    This chapter compares Peter Montgomery\u27s modular multiplication method with traditional techniques for suitability on hardware platforms. It also covers systolic array implementations and side channel leakage

    Montgomery Arithmetic from a Software Perspective

    Get PDF
    This chapter describes Peter L. Montgomery\u27s modular multiplication method and the various improvements to reduce the latency for software implementations on devices which have access to many computational units
    corecore