758 research outputs found

    Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4

    Full text link
    We consider the weight spectrum of a class of quasi-perfect binary linear codes with code distance 4. For example, extended Hamming code and Panchenko code are the known members of this class. Also, it is known that in many cases Panchenko code has the minimal number of weight 4 codewords. We give exact recursive formulas for the weight spectrum of quasi-perfect codes and their dual codes. As an example of application of the weight spectrum we derive a lower estimate for the conditional probability of correction of erasure patterns of high weights (equal to or greater than code distance).Comment: 5 pages, 11 references, 2 tables; some explanations and detail are adde

    The Trapping Redundancy of Linear Block Codes

    Full text link
    We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640,1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.Comment: 12 pages, 4 tables, 1 figure, accepted for publication in IEEE Transactions on Information Theor

    Some results on 2n−m2^{n-m} designs of resolution IV with (weak) minimum aberration

    Full text link
    It is known that all resolution IV regular 2n−m2^{n-m} designs of run size N=2n−mN=2^{n-m} where 5N/16<n<N/25N/16<n<N/2 must be projections of the maximal even design with N/2N/2 factors and, therefore, are even designs. This paper derives a general and explicit relationship between the wordlength pattern of any even 2n−m2^{n-m} design and that of its complement in the maximal even design. Using these identities, we identify some (weak) minimum aberration 2n−m2^{n-m} designs of resolution IV and the structures of their complementary designs. Based on these results, several families of minimum aberration 2n−m2^{n-m} designs of resolution IV are constructed.Comment: Published in at http://dx.doi.org/10.1214/08-AOS670 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rigidity of spherical codes

    Full text link
    A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.Comment: 39 pages, 8 figure

    Kodierungstheorie

    Get PDF
    [no abstract available
    • …
    corecore