7,309 research outputs found

    Long properly colored cycles in edge colored complete graphs

    Full text link
    Let KncK_{n}^{c} denote a complete graph on nn vertices whose edges are colored in an arbitrary way. Let Δmon(Knc)\Delta^{\mathrm{mon}} (K_{n}^{c}) denote the maximum number of edges of the same color incident with a vertex of KncK_{n}^{c}. A properly colored cycle (path) in KncK_{n}^{c} is a cycle (path) in which adjacent edges have distinct colors. B. Bollob\'{a}s and P. Erd\"{o}s (1976) proposed the following conjecture: if Δmon(Knc)<⌊n2⌋\Delta^{\mathrm{mon}} (K_{n}^{c})<\lfloor \frac{n}{2} \rfloor, then KncK_{n}^{c} contains a properly colored Hamiltonian cycle. Li, Wang and Zhou proved that if Δmon(Knc)<⌊n2⌋\Delta^{\mathrm{mon}} (K_{n}^{c})< \lfloor \frac{n}{2} \rfloor, then KncK_{n}^{c} contains a properly colored cycle of length at least ⌈n+23⌉+1\lceil \frac{n+2}{3}\rceil+1. In this paper, we improve the bound to ⌈n2⌉+2\lceil \frac{n}{2}\rceil + 2.Comment: 8 page

    Proper Hamiltonian Cycles in Edge-Colored Multigraphs

    Get PDF
    A cc-edge-colored multigraph has each edge colored with one of the cc available colors and no two parallel edges have the same color. A proper Hamiltonian cycle is a cycle containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper Hamiltonian cycle, depending on several parameters such as the number of edges and the rainbow degree.Comment: 13 page

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,â‰ș)\mathcal{G}=(G,\prec) where GG is a graph and â‰ș\prec is a total ordering of its vertices. The ordered Ramsey number R‟(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R‟(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R‟(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem

    Full text link
    We give a 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem.Comment: 6 figure

    Maximum Δ\Delta-edge-colorable subgraphs of class II graphs

    Full text link
    A graph GG is class II, if its chromatic index is at least Δ+1\Delta+1. Let HH be a maximum Δ\Delta-edge-colorable subgraph of GG. The paper proves best possible lower bounds for ∣E(H)∣∣E(G)∣\frac{|E(H)|}{|E(G)|}, and structural properties of maximum Δ\Delta-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with Δ≄3\Delta\geq3 can be extended to a maximum Δ\Delta-edge-colorable subgraph. Simple graphs have a maximum Δ\Delta-edge-colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ\Delta-edge-colorable subgraph of a simple graph is always class I.Comment: 13 pages, 2 figures, the proof of the Lemma 1 is correcte

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe
    • 

    corecore