929 research outputs found

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    Restricted Space Algorithms for Isomorphism on Bounded Treewidth Graphs

    Get PDF
    The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded tree distance width are known to be solvable in polynomial time [Bod90],[YBFT99]. We give restricted space algorithms for these problems proving the following results: - Isomorphism for bounded tree distance width graphs is in L and thus complete for the class. We also show that for this kind of graphs a canon can be computed within logspace. - For bounded treewidth graphs, when both input graphs are given together with a tree decomposition, the problem of whether there is an isomorphism which respects the decompositions (i.e. considering only isomorphisms mapping bags in one decomposition blockwise onto bags in the other decomposition) is in L. - For bounded treewidth graphs, when one of the input graphs is given with a tree decomposition the isomorphism problem is in LogCFL. - As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL. This improves the known TC1 upper bound for the problem given by Grohe and Verbitsky [GroVer06].Comment: STACS conference 2010, 12 page

    Pure Nash Equilibria: Hard and Easy Games

    Full text link
    We investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether a game has a strong Nash equilibrium is SigmaP2-complete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each players payoff depends on moves of other players. We say that a game has small neighborhood if the utility function for each player depends only on (the actions of) a logarithmically small number of other players. The dependency structure of a game G can be expressed by a graph DG(G) or by a hypergraph H(G). By relating Nash equilibrium problems to constraint satisfaction problems (CSPs), we show that if G has small neighborhood and if H(G) has bounded hypertree width (or if DG(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFL-complete and thus in the class NC2 of highly parallelizable problems

    MALL proof equivalence is Logspace-complete, via binary decision diagrams

    Get PDF
    Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.Comment: in TLCA 201
    • …
    corecore