491 research outputs found

    Composite Fading Models based on Inverse Gamma Shadowing: Theory and Validation

    Get PDF
    We introduce a general approach to characterize composite fading models based on inverse gamma (IG) shadowing. We first determine to what extent the IG distribution is an adequate choice for modeling shadow fading, by means of a comprehensive test with field measurements and other distributions conventionally used for this purpose. Then, we prove that the probability density function and cumulative distribution function of any IG-based composite fading model are directly expressed in terms of a Laplace-domain statistic of the underlying fast fading model and, in some relevant cases, as a mixture of wellknown state-of-the-art distributions. Also, exact and asymptotic expressions for the outage probability are provided, which are valid for any choice of baseline fading distribution. Finally, we exemplify our approach by presenting several application examples for IG-based composite fading models, for which their statistical characterization is directly obtained in a simple form.Comment: This work has been submitted to the IEEE for publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    On the Utility of the Inverse Gamma Distribution in Modeling Composite Fading Channels

    Get PDF
    We introduce a general approach to characterize composite fading models based on inverse gamma (IG) shadowing. We first determine to what extent the IG distribution is an adequate choice for modeling shadow fading, by means of a comprehensive test with field measurements and other distributions conventionally used for this purpose. Then, we prove that the probability density function and cumulative density function of any IG-based composite fading model are directly expressed in terms of a Laplace-domain statistic of the underlying fast fading model, and in some relevant cases, as a mixture of well-known state-of-the-art distributions. We exemplify our approach by presenting a composite IG/two-wave with diffuse power fading model, for which its statistical characterization is directly attained in a simple form.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver

    Get PDF
    [Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered, an 18-m long corridor and a 42-m2 office. The modeling technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions

    A Comprehensive Analysis of 5G Heterogeneous Cellular Systems operating over Îş\kappa-ÎĽ\mu Shadowed Fading Channels

    Get PDF
    Emerging cellular technologies such as those proposed for use in 5G communications will accommodate a wide range of usage scenarios with diverse link requirements. This will include the necessity to operate over a versatile set of wireless channels ranging from indoor to outdoor, from line-of-sight (LOS) to non-LOS, and from circularly symmetric scattering to environments which promote the clustering of scattered multipath waves. Unfortunately, many of the conventional fading models adopted in the literature to develop network models lack the flexibility to account for such disparate signal propagation mechanisms. To bridge the gap between theory and practical channels, we consider κ\kappa-μ\mu shadowed fading, which contains as special cases, the majority of the linear fading models proposed in the open literature, including Rayleigh, Rician, Nakagami-m, Nakagami-q, One-sided Gaussian, κ\kappa-μ\mu, η\eta-μ\mu, and Rician shadowed to name but a few. In particular, we apply an orthogonal expansion to represent the κ\kappa-μ\mu shadowed fading distribution as a simplified series expression. Then using the series expressions with stochastic geometry, we propose an analytic framework to evaluate the average of an arbitrary function of the SINR over κ\kappa-μ\mu shadowed fading channels. Using the proposed method, we evaluate the spectral efficiency, moments of the SINR, bit error probability and outage probability of a KK-tier HetNet with KK classes of BSs, differing in terms of the transmit power, BS density, shadowing characteristics and small-scale fading. Building upon these results, we provide important new insights into the network performance of these emerging wireless applications while considering a diverse range of fading conditions and link qualities
    • …
    corecore