12,142 research outputs found

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm

    A Comparison of Multi-instance Learning Algorithms

    Get PDF
    Motivated by various challenging real-world applications, such as drug activity prediction and image retrieval, multi-instance (MI) learning has attracted considerable interest in recent years. Compared with standard supervised learning, the MI learning task is more difficult as the label information of each training example is incomplete. Many MI algorithms have been proposed. Some of them are specifically designed for MI problems whereas others have been upgraded or adapted from standard single-instance learning algorithms. Most algorithms have been evaluated on only one or two benchmark datasets, and there is a lack of systematic comparisons of MI learning algorithms. This thesis presents a comprehensive study of MI learning algorithms that aims to compare their performance and find a suitable way to properly address different MI problems. First, it briefly reviews the history of research on MI learning. Then it discusses five general classes of MI approaches that cover a total of 16 MI algorithms. After that, it presents empirical results for these algorithms that were obtained from 15 datasets which involve five different real-world application domains. Finally, some conclusions are drawn from these results: (1) applying suitable standard single-instance learners to MI problems can often generate the best result on the datasets that were tested, (2) algorithms exploiting the standard asymmetric MI assumption do not show significant advantages over approaches using the so-called collective assumption, and (3) different MI approaches are suitable for different application domains, and no MI algorithm works best on all MI problems

    Boosting as a Product of Experts

    Full text link
    In this paper, we derive a novel probabilistic model of boosting as a Product of Experts. We re-derive the boosting algorithm as a greedy incremental model selection procedure which ensures that addition of new experts to the ensemble does not decrease the likelihood of the data. These learning rules lead to a generic boosting algorithm - POE- Boost which turns out to be similar to the AdaBoost algorithm under certain assumptions on the expert probabilities. The paper then extends the POEBoost algorithm to POEBoost.CS which handles hypothesis that produce probabilistic predictions. This new algorithm is shown to have better generalization performance compared to other state of the art algorithms
    corecore