856 research outputs found

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Singly generated quasivarieties and residuated structures

    Get PDF
    A quasivariety K of algebras has the joint embedding property (JEP) iff it is generated by a single algebra A. It is structurally complete iff the free countably generated algebra in K can serve as A. A consequence of this demand, called "passive structural completeness" (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K-simple algebra. It is a minimal quasivariety if, moreover, it is PSC but fails to unify some finite set of equations. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC iff its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics

    Weighted Automata and Logics for Infinite Nested Words

    Full text link
    Nested words introduced by Alur and Madhusudan are used to capture structures with both linear and hierarchical order, e.g. XML documents, without losing valuable closure properties. Furthermore, Alur and Madhusudan introduced automata and equivalent logics for both finite and infinite nested words, thus extending B\"uchi's theorem to nested words. Recently, average and discounted computations of weights in quantitative systems found much interest. Here, we will introduce and investigate weighted automata models and weighted MSO logics for infinite nested words. As weight structures we consider valuation monoids which incorporate average and discounted computations of weights as well as the classical semirings. We show that under suitable assumptions, two resp. three fragments of our weighted logics can be transformed into each other. Moreover, we show that the logic fragments have the same expressive power as weighted nested word automata.Comment: LATA 2014, 12 page

    Wreath Products of Forest Algebras, with Applications to Tree Logics

    Full text link
    We use the recently developed theory of forest algebras to find algebraic characterizations of the languages of unranked trees and forests definable in various logics. These include the temporal logics CTL and EF, and first-order logic over the ancestor relation. While the characterizations are in general non-effective, we are able to use them to formulate necessary conditions for definability and provide new proofs that a number of languages are not definable in these logics

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page
    corecore