427,087 research outputs found

    Development of Multi-Representation Test As A Solution to Train High-Order Thinking Skills High School Students in Newton’s Law

    Get PDF
    This research  aims to develop a multi-representation based test instrument that can be used to measure students' higher-order thinking skills, especially in Newton's law material. development procedures used the Plomp development model, the stages were design, construction/ realization, test, evaluation, revision, and implementation. The subjects in this study were 36 students of class X at one of High School in Surabaya. At the implementation stage, tests were given to students and analysed using Rasch analysis with help of Winstep software. The multi-representation test instrument in question was a question in the form of an essay with a representation model consisted of visual, verbal, and mathematical representations adapted to the cognitive domain of Bloom's taxonomy of higher-order thinking. Data collection techniques were validation of instruments and tests. The results of this study were 9 items of valid test instruments based on logical validity and empirical validity and a reliable instrument based on calculations using the Alpha Cronbach equation. Based on the results of this  research can be concluded that multi-representation test can be train high order thinking skills students. Study with multi-representation test is expected to be able to make students are easier to develop high order thinking skill, in this research students can be categorized as having sufficient high-order thinking skills

    Unconventional machine learning of genome-wide human cancer data

    Full text link
    Recent advances in high-throughput genomic technologies coupled with exponential increases in computer processing and memory have allowed us to interrogate the complex aberrant molecular underpinnings of human disease from a genome-wide perspective. While the deluge of genomic information is expected to increase, a bottleneck in conventional high-performance computing is rapidly approaching. Inspired in part by recent advances in physical quantum processors, we evaluated several unconventional machine learning (ML) strategies on actual human tumor data. Here we show for the first time the efficacy of multiple annealing-based ML algorithms for classification of high-dimensional, multi-omics human cancer data from the Cancer Genome Atlas. To assess algorithm performance, we compared these classifiers to a variety of standard ML methods. Our results indicate the feasibility of using annealing-based ML to provide competitive classification of human cancer types and associated molecular subtypes and superior performance with smaller training datasets, thus providing compelling empirical evidence for the potential future application of unconventional computing architectures in the biomedical sciences

    Products of effective topological spaces and a uniformly computable Tychonoff Theorem

    Full text link
    This article is a fundamental study in computable analysis. In the framework of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite products of effective topological spaces. For obtaining uniform results we introduce natural multi-representations of the class of all effective topological spaces, of their points, of their subsets and of their compact subsets. We show that the binary, finite and countable product operations on effective topological spaces are computable. For spaces with non-empty base sets the factors can be retrieved from the products. We study computability of the product operations on points, on arbitrary subsets and on compact subsets. For the case of compact sets the results are uniformly computable versions of Tychonoff's Theorem (stating that every Cartesian product of compact spaces is compact) for both, the cover multi-representation and the "minimal cover" multi-representation
    • …
    corecore