17,087 research outputs found

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    A Computational Algebra Approach to the Reverse Engineering of Gene Regulatory Networks

    Full text link
    This paper proposes a new method to reverse engineer gene regulatory networks from experimental data. The modeling framework used is time-discrete deterministic dynamical systems, with a finite set of states for each of the variables. The simplest examples of such models are Boolean networks, in which variables have only two possible states. The use of a larger number of possible states allows a finer discretization of experimental data and more than one possible mode of action for the variables, depending on threshold values. Furthermore, with a suitable choice of state set, one can employ powerful tools from computational algebra, that underlie the reverse-engineering algorithm, avoiding costly enumeration strategies. To perform well, the algorithm requires wildtype together with perturbation time courses. This makes it suitable for small to meso-scale networks rather than networks on a genome-wide scale. The complexity of the algorithm is quadratic in the number of variables and cubic in the number of time points. The algorithm is validated on a recently published Boolean network model of segment polarity development in Drosophila melanogaster.Comment: 28 pages, 5 EPS figures, uses elsart.cl

    A Logical Characterization of Constant-Depth Circuits over the Reals

    Full text link
    In this paper we give an Immerman's Theorem for real-valued computation. We define circuits operating over real numbers and show that families of such circuits of polynomial size and constant depth decide exactly those sets of vectors of reals that can be defined in first-order logic on R-structures in the sense of Cucker and Meer. Our characterization holds both non-uniformily as well as for many natural uniformity conditions.Comment: 24 pages, submitted to WoLLIC 202

    Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems

    Full text link
    We propose a matrix model for two- and many-valued logic using families of observables in Hilbert space, the eigenvalues give the truth values of logical propositions where the atomic input proposition cases are represented by the respective eigenvectors. For binary logic using the truth values {0,1} logical observables are pairwise commuting projectors. For the truth values {+1,-1} the operator system is formally equivalent to that of a composite spin 1/2 system, the logical observables being isometries belonging to the Pauli group. Also in this approach fuzzy logic arises naturally when considering non-eigenvectors. The fuzzy membership function is obtained by the quantum mean value of the logical projector observable and turns out to be a probability measure in agreement with recent quantum cognition models. The analogy of many-valued logic with quantum angular momentum is then established. Logical observables for three-value logic are formulated as functions of the Lz observable of the orbital angular momentum l=1. The representative 3-valued 2-argument logical observables for the Min and Max connectives are explicitly obtained.Comment: 11 pages, 2 table
    • …
    corecore