560 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Grafting an ATM network onto an existing ethernet network

    Get PDF
    Grafting an ATM network onto an existing Ethernet network is a non-trivial exercise in network configuration. The process of mating ATM technology to an Ethernet network without tampering the underlying backbone and network configuration gives rise to a variety of networking issues including addressing, compatibility, security, efficiency, administrative effort, and scalability. Examples of actual situations serve to illustrate these issues. We have designed several scenarios to tackle the topological problems of an ATM graft. A dual IP approach works but suffers from a lack of scalability. We expect an edge routing solution, with subnetting, will be the most elegant and scalable.Telkom, Siemens, THRI

    Key Management for Secure Multicast in Hybrid Satellite Networks

    Get PDF
    Keywords: This paper proposes a design for key management for secure multicast in hybrid satellite networks. Communication satellites offer an efficient way to extend IP multicast services for groups in wide-area networks. In order to be commercially viable, the multicast traffic should be accessible only to paying subscribers. Access control can be achieved by data encryption. This requires secure and efficient methods to generate, distribute and update the keys. Most current key management protocols do not scale well when applied to large dynamic groups in wide-area networks. This paper attempts to solve the above problem for groups in a hybrid network that is composed of terrestrial Ethernet LANs interconnected by ATM-based satellite channels. We investigate current group key management protocols, and design a framework for secure and scalable key management for the multicast routing architecture in the satellite network. The proposed framework is presented in detail, alongwith analysis and simulation results. Satellite network, secure multicast, group key management. 1

    IP and ATM - a position paper

    Get PDF
    This paper gives a technical overview of different networking technologies, such as the Internet, ATM. It describes different approaches of how to run IP on top of an ATM network, and assesses their potential to be used as an integrated services network

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    IP and ATM - current evolution for integrated services

    Get PDF
    Current and future applications make use of different technologies as voice, data, and video. Consequently network technologies need to support them. For many years, the ATM based Broadband-ISDN has generally been regarded as the ultimate networking technology, which can integrate voice, data, and video services. With the recent tremendous growth of the Internet and the reluctant deployment of public ATM networks, the future development of ATM seems to be less clear than it used to be. In the past IP provided (and was though to provide) only best effort services, thus, despite its world wide diffution, was not considered as a network solution for multimedia application. Currently many of the IETF working groups work on areas related to integrated services, and IP is also proposing itself as networking technology for supporting voice, data, and video services. This paper give a technical overview on the competing integrated services network solutions, such as IP, ATM and the different available and emerging technologies on how to run IP over ATM, and tries to identify their potential and shortcomings

    Mobile IP

    Get PDF
    The Internet is growing exponentially, both in the amount of traffic carried, and in the amount of hosts connected. IP technology is becoming more and more important, in company networks (Intranets), and also in the core networks for the next generation mobile networks. Further, wireless access to IP networks is becoming mature (e.g., IEEE 802.11 networks, Irda, Bluetooth). At the same time, the existing generation of mobile (cellular) networks is evolving from voice services to networks with a rich mixture of services (e.g., GPRS and 3rd generation networks). These developments demand for mobility in IP-based networks. A first solution to this problem has been proposed as Mobile IP. This solution makes use of Home Agents and Foreign Agents to allow mobile hosts to move freely between subnetworks while communicating.\ud \ud The tutorial will describe and explain the approaches taken to provide mobility for hosts in the Internet and IP-based networks. The tutorial will start with expanding on the need for Mobile IP. It will briefly explain the main Internet principles relevant to Mobile IP. The problems Mobile IP is trying to solve will be explained. After an overview of the general operation of Mobile IP, the principal mechanisms will be discussed in more detail. The tutorial will describe the operation of advertising care-of addresses, mobile host registration, tunneling, and proxy- and gratuitous ARP. Special attention will be paid to the main problems related to Mobile IP, such as triangle routing and smooth hand-off. The tutorial will finally explain how mobility can be supported in IPv6.\u

    PIM-SM = Protocol Independent Multicast- Sparse Mode

    Get PDF
    This paper proposes a design for IP multicast routing in hybrid satellite networks. The emergence of IP multicast for Internet group communication has placed focus on communication satellites as an efficient way to extend the multicast services for groups with distributed membership in wide-area networks. This poses interesting challenges for routing. Hybrid satellite networks can have both wired and wireless links and also combine different link-layer technologies like Ethernet and ATM. No proposed IP multicast routing protocol for wired networks offers an integrated solution for such networks. This paper attempts to provide a solution by proposing a design for IP multicast routing in wide-area networks that have terrestrial Ethernet LANs interconnected by A TM-based satellite channels. The paper reviews the multicast services offered by IP and A TM, and proposes a multicast routing framework that combines PIM-SM protocol for terrestrial multicasting with the A TM MARS and VC mesh architecture for multicast routing over the satellite links. Modifications are made to the standard protocols to suit the unique needs of the network being considered. The feasibility of the proposed design is tested by performing simulations. The proposed framework is presented in detail, along with analysis and simulation results
    • …
    corecore