140 research outputs found

    Bisimulations and Logical Characterizations on Continuous-time Markov Decision Processes

    Full text link
    In this paper we study strong and weak bisimulation equivalences for continuous-time Markov decision processes (CTMDPs) and the logical characterizations of these relations with respect to the continuous-time stochastic logic (CSL). For strong bisimulation, it is well known that it is strictly finer than CSL equivalence. In this paper we propose strong and weak bisimulations for CTMDPs and show that for a subclass of CTMDPs, strong and weak bisimulations are both sound and complete with respect to the equivalences induced by CSL and the sub-logic of CSL without next operator respectively. We then consider a standard extension of CSL, and show that it and its sub-logic without X can be fully characterized by strong and weak bisimulations respectively over arbitrary CTMDPs.Comment: The conference version of this paper was published at VMCAI 201

    SOS rule formats for convex and abstract probabilistic bisimulations

    Full text link
    Probabilistic transition system specifications (PTSSs) in the ntμfθ/ntμxθnt \mu f\theta / nt\mu x\theta format provide structural operational semantics for Segala-type systems that exhibit both probabilistic and nondeterministic behavior and guarantee that bisimilarity is a congruence for all operator defined in such format. Starting from the ntμfθ/ntμxθnt \mu f\theta / nt\mu x\theta format, we obtain restricted formats that guarantee that three coarser bisimulation equivalences are congruences. We focus on (i) Segala's variant of bisimulation that considers combined transitions, which we call here "convex bisimulation"; (ii) the bisimulation equivalence resulting from considering Park & Milner's bisimulation on the usual stripped probabilistic transition system (translated into a labelled transition system), which we call here "probability obliterated bisimulation"; and (iii) a "probability abstracted bisimulation", which, like bisimulation, preserves the structure of the distributions but instead, it ignores the probability values. In addition, we compare these bisimulation equivalences and provide a logic characterization for each of them.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634

    Bisimilarity is not Borel

    Full text link
    We prove that the relation of bisimilarity between countable labelled transition systems is ÎŁ11\Sigma_1^1-complete (hence not Borel), by reducing the set of non-wellorders over the natural numbers continuously to it. This has an impact on the theory of probabilistic and nondeterministic processes over uncountable spaces, since logical characterizations of bisimilarity (as, for instance, those based on the unique structure theorem for analytic spaces) require a countable logic whose formulas have measurable semantics. Our reduction shows that such a logic does not exist in the case of image-infinite processes.Comment: 20 pages, 1 figure; proof of Sigma_1^1 completeness added with extended comments. I acknowledge careful reading by the referees. Major changes in Introduction, Conclusion, and motivation for NLMP. Proof for Lemma 22 added, simpler proofs for Lemma 17 and Theorem 30. Added references. Part of this work was presented at Dagstuhl Seminar 12411 on Coalgebraic Logic

    Logical Characterizations of Behavioral Relations on Transition Systems of Probability Distributions

    Get PDF
    Probabilistic nondeterministic processes are commonly modeled as probabilistic LTSs (PLTSs). A number of logical characterizations of the main behavioral relations on PLTSs have been studied. In particular, Parma and Segala [2007] and Hermanns et al. [2011] define a probabilistic Hennessy-Milner logic interpreted over probability distributions, whose corresponding logical equivalence/preorder when restricted to Dirac distributions coincide with standard bisimulation/simulation between the states of a PLTS. This result is here extended by studying the full logical equivalence/preorder between (possibly non-Dirac) distributions in terms of a notion of bisimulation/simulation defined on a LTS whose states are distributions (dLTS). We show that the well-known spectrum of behavioral relations on nonprobabilistic LTSs as well as their corresponding logical characterizations in terms of Hennessy-Milner logic scales to the probabilistic setting when considering dLTSs

    Logical Characterization of Bisimulation for Transition Relations over Probability Distributions with Internal Actions

    Get PDF
    In recent years the study of probabilistic transition systems has shifted to transition relations over distributions to allow for a smooth adaptation of the standard non-probabilistic apparatus. In this paper we study transition relations over probability distributions in a setting with internal actions. We provide new logics that characterize probabilistic strong, weak and branching bisimulation. Because these semantics may be considered too strong in the probabilistic context, Eisentraut et al. recently proposed weak distribution bisimulation. To show the flexibility of our approach based on the framework of van Glabbeek for the non-deterministic setting, we provide a novel logical characterization for the latter probabilistic equivalence as well

    A theory for the semantics of stochastic and non-deterministic continuous systems

    Get PDF
    Preprint de capítulo del libro Lecture Notes in Computer Science book series (LNCS, volume 8453)The description of complex systems involving physical or biological components usually requires to model complex continuous behavior induced by variables such as time, distance, speed, temperature, alkalinity of a solution, etc. Often, such variables can be quantified probabilistically to better understand the behavior of the complex systems. For example, the arrival time of events may be considered a Poisson process or the weight of an individual may be assumed to be distributed according to a log-normal distribution. However, it is also common that the uncertainty on how these variables behave makes us prefer to leave out the choice of a particular probability and rather model it as a purely non-deterministic decision, as it is the case when a system is intended to be deployed in a variety of very different computer or network architectures. Therefore, the semantics of these systems needs to be represented by a variant of probabilistic automata that involves continuous domains on the state space and the transition relation. In this paper, we provide a survey on the theory of such kind of models. We present the theory of the so-called labeled Markov processes (LMP) and its extension with internal non-determinism (NLMP). We show that in these complex domains, the bisimulation relation can be understood in different manners. We show the relation between the different bisimulations and try to understand their expressiveness through examples. We also study variants of Hennessy-Milner logic thatprovides logical characterizations of some of these bisimulations.Supported by ANPCyT project PICT-2012-1823, SeCyT-UNC projects 05/B284 and 05/B497 and program 05/BP02, and EU 7FP grant agreement 295261 (MEALS).http://link.springer.com/chapter/10.1007%2F978-3-662-45489-3_3acceptedVersionFil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Rubén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: D'Argenio, Pedro Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Sánchez Terraf, Pedro Octavio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Sánchez Terraf, Pedro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Wolovick, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Estadística y Probabilida
    • …
    corecore