9 research outputs found

    Propagators and Solvers for the Algebra of Modular Systems

    Full text link
    To appear in the proceedings of LPAR 21. Solving complex problems can involve non-trivial combinations of distinct knowledge bases and problem solvers. The Algebra of Modular Systems is a knowledge representation framework that provides a method for formally specifying such systems in purely semantic terms. Formally, an expression of the algebra defines a class of structures. Many expressive formalism used in practice solve the model expansion task, where a structure is given on the input and an expansion of this structure in the defined class of structures is searched (this practice overcomes the common undecidability problem for expressive logics). In this paper, we construct a solver for the model expansion task for a complex modular systems from an expression in the algebra and black-box propagators or solvers for the primitive modules. To this end, we define a general notion of propagators equipped with an explanation mechanism, an extension of the alge- bra to propagators, and a lazy conflict-driven learning algorithm. The result is a framework for seamlessly combining solving technology from different domains to produce a solver for a combined system.Comment: To appear in the proceedings of LPAR 2

    On Computational Small Steps and Big Steps: Refocusing for Outermost Reduction

    Get PDF
    We study the relationship between small-step semantics, big-step semantics and abstract machines, for programming languages that employ an outermost reduction strategy, i.e., languages where reductions near the root of the abstract syntax tree are performed before reductions near the leaves.In particular, we investigate how Biernacka and Danvy's syntactic correspondence and Reynolds's functional correspondence can be applied to inter-derive semantic specifications for such languages.The main contribution of this dissertation is three-fold:First, we identify that backward overlapping reduction rules in the small-step semantics cause the refocusing step of the syntactic correspondence to be inapplicable.Second, we propose two solutions to overcome this in-applicability: backtracking and rule generalization.Third, we show how these solutions affect the other transformations of the two correspondences.Other contributions include the application of the syntactic and functional correspondences to Boolean normalization.In particular, we show how to systematically derive a spectrum of normalization functions for negational and conjunctive normalization

    Detection and Exploitation of Information Flow Leaks

    Get PDF
    This thesis contributes to the field of language-based information flow analysis with a focus on detection and exploitation of information flow leaks in programs. To achieve this goal, this thesis presents a number of precise semi-automatic approaches that allow one to detect, exploit and judge the severity of information flow leaks in programs. The first part of the thesis develops an approach to detect and demonstrate information flow leaks in a program. This approach analyses a given program statically using symbolic execution and self-composition with the aim to generate so-called insecurity formulas whose satisfying models (obtained by SMT solvers) give rise to pairs of initial states that demonstrate insecure information flows. Based on these models, small unit test cases, so-called leak demonstrators, are created that check for the detected information flow leaks and fail if these exist. The developed approach is able to deal with unbounded loops and recursive method invocation by using program specifications like loop invariants or method contracts. This allows the approach to be fully precise (if needed) but also to abstract and allow for false positives in exchange for a higher degree of automation and simpler specifications. The approach supports several information flow security policies, namely, noninterference, delimited information release, and information erasure. The second part of the thesis builds upon the previous approach that allows the user to judge the severity of an information flow leak by exploiting the detected leaks in order to infer the secret information. This is achieved by utilizing a hybrid analysis which conducts an adaptive attack by performing a series of experiments. An experiment constitutes a concrete program run which serves to accumulate the knowledge about the secret. Each experiment is carried out with optimal low inputs deduced from the prior distribution and the knowledge of secret so that the potential leakage is maximized. We propose a novel approach to quantify information leakages as explicit functions of low inputs using symbolic execution and parametric model counting. Depending on the chosen security metric, general nonlinear optimization tools or Max-SMT solvers are used to find optimal low inputs, i.e., inputs that cause the program to leak a maximum of information. For the purpose of evaluation, both approaches have been fully implemented in the tool KEG, which is based on the state-of-the-art program verification system KeY. KEG supports a rich subset of sequential Java programs and generates executable JUnit tests as leak demonstrators. For the secret inference, KEG produces executable Java programs and runs them to perform the adaptive attack. The thesis discusses the planning, execution, and results of the evaluation. The evaluation has been performed on a collection of micro-benchmarks as well as two case studies, which are taken from the literature. The evaluation using the micro-benchmarks shows that KEG detects successfully all information flow leaks and is able to generate correct demonstrators in case the supplied specifications are correct and strong enough. With respect to secret inference, it shows that the approach presented in this thesis (which computes optimal low inputs) helps an attacker to learn the secret much more efficiently compared to approaches using arbitrary low inputs. KEG has also been evaluated in two case studies. The first case study is performed on an e-voting software which has been extracted in a simplified form from a real-world e-voting system. This case study focuses on the leak detection and demonstrator generation approach. The e-voting case study shows that KEG is able to deal with relatively complicated programs that include unbounded loops, objects, and arrays. Moreover, the case study demonstrates that KEG can be integrated with a specification generation tool to obtain both precision and full automation. The second case study is conducted on a PIN integrity checking program, adapted from a real-world ATM PIN verifying system. This case study mainly demonstrates the secret inference feature of KEG. It shows that KEG can help an attacker to learn the secret more efficiently given a good enough assumption about the prior distribution of secret

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore