88,275 research outputs found

    Quantum Genetics, Quantum Automata and Quantum Computation

    Get PDF
    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In a previous publication (Baianu,1971a) the formal concept of quantum automaton was introduced and its possible implications for genetic and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b). The notions of topological semigroup, quantum automaton,or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebras that showed significant dissimilarities (Baianu, 1977) from Bolean models of human neural networks (McCullough and Pitts,1945). Molecular models in terms of categories, functors and natural transformations were then formulated for uni-molecular chemical transformations, multi-molecular chemical and biochemical transformations (Baianu, 1983,2004a). Previous applications of computer modeling, classical automata theory, and relational biology to molecular biology, oncogenesis and medicine were extensively reviewed and several important conclusions were reached regarding both the potential and limitations of the computation-assisted modeling of biological systems, and especially complex organisms such as Homo sapiens sapiens(Baianu,1987). Novel approaches to solving the realization problems of Relational Biology models in Complex System Biology are introduced in terms of natural transformations between functors of such molecular categories. Several applications of such natural transformations of functors were then presented to protein biosynthesis, embryogenesis and nuclear transplant experiments. Other possible realizations in Molecular Biology and Relational Biology of Organisms are here suggested in terms of quantum automata models of Quantum Genetics and Interactomics. Future developments of this novel approach are likely to also include: Fuzzy Relations in Biology and Epigenomics, Relational Biology modeling of Complex Immunological and Hormonal regulatory systems, n-categories and Topoi of Lukasiewicz Logic Algebras and Intuitionistic Logic (Heyting) Algebras for modeling nonlinear dynamics and cognitive processes in complex neural networks that are present in the human brain, as well as stochastic modeling of genetic networks in Lukasiewicz Logic Algebras

    Creation and Application of Various Tools for the Reconstruction, Curation, and Analysis of Genome-Scale Models of Metabolism

    Get PDF
    Systems biology uses mathematics tools, modeling, and analysis for holistic understanding and design of biological systems, allowing the investigation of metabolism and the generation of actionable hypotheses based on model analyses. Detailed here are several systems biology tools for model reconstruction, curation, analysis, and application through synthetic biology. The first, OptFill, is a holistic (whole model) and conservative (minimizing change) tool to aid in genome-scale model (GSM) reconstructions by filling metabolic gaps caused by lack of system knowledge. This is accomplished through Mixed Integer Linear Programming (MILP), one step of which may also be independently used as an additional curation tool. OptFill is applied to a GSM reconstruction of the melanized fungus Exophiala dermatitidis, which underwent various analyses investigating pigmentogenesis and similarity to human melanogenesis. Analysis suggest that carotenoids serve a currently unknown function in E. dermatitidis and that E. dermatitidis could serve as a model of human melanocytes for biomedical applications. Next, a new approach to dynamic Flux Balance Analysis (dFBA) is detailed, the Optimization- and Runge-Kutta- based Approach (ORKA). The ORKA is applied to the model plant Arabidopsis thaliana to show its ability to recreate in vivo observations. The analyzed model is more detailed than previous models, encompassing a larger time scale, modeling more tissues, and with higher accuracy. Finally, a pair of tools, the Eukaryotic Genetic Circuit Design (EuGeneCiD) and Modeling (EuGeneCiM) tools, is introduced which can aid in the design and modeling of synthetic biology applications hypothesized using systems biology. These tools bring a computational approach to synthetic biology, and are applied to Arabidopsis thaliana to design thousands of potential two-input genetic circuits which satisfy 27 different input and logic gate combinations. EuGeneCiM is further used to model a repressilator circuit. Efforts are ongoing to disseminate these tools to maximize their impact on the field of systems biology. Future research will include further investigation of E. dermatitidis through modeling and expanding my expertise to kinetic models of metabolism. Advisor: Rajib Sah

    Computational Logic for Biomedicine and Neurosciences

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis

    A practical guide to mechanistic systems modeling in biology using a logic-based approach

    Get PDF
    Mechanistic computational models enable the study of regulatory mechanisms implicated in various biological processes. These models provide a means to analyze the dynamics of the systems they describe, and to study and interrogate their properties, and provide insights about the emerging behavior of the system in the presence of single or combined perturbations. Aimed at those who are new to computational modeling, we present here a practical hands-on protocol breaking down the process of mechanistic modeling of biological systems in a succession of precise steps. The protocol provides a framework that includes defining the model scope, choosing validation criteria, selecting the appropriate modeling approach, constructing a model and simulating the model. To ensure broad accessibility of the protocol, we use a logical modeling framework, which presents a lower mathematical barrier of entry, and two easy-to-use and popular modeling software tools: Cell Collective and GINsim. The complete modeling workflow is applied to a well-studied and familiar biological process—the lac operon regulatory system. The protocol can be completed by users with little to no prior computational modeling experience approximately within 3 h

    Toward a Logic of the Organism: A Process Philosophical Consideration

    Get PDF
    Mathematical models applied in contemporary theoretical and systems biology are based on some implicit ontological assumptions about the nature of organisms. This article aims to show that real organisms reveal a logic of internal causality transcending the tacit logic of biological modeling. Systems biology has focused on models consisting of static systems of differential equations operating with fixed control parameters that are measured or fitted to experimental data. However, the structure of real organisms is a highly dynamic process, the internal causality of which can only be captured by continuously changing systems of equations. In addition, in real physiological settings kinetic parameters can vary by orders of magnitude, i.e., organisms vary the value of internal quantities that in models are represented by fixed control parameters. Both the plasticity of organisms and the state dependence of kinetic parameters adds indeterminacy to the picture and asks for a new statistical perspective. This requirement could be met by the arising Biological Statistical Mechanics project, which promises to do more justice to the nature of real organisms than contemporary modeling. This article concludes that Biological Statistical Mechanics allows for a wider range of organismic ontologies than does the tacitly followed ontology of contemporary theoretical and systems biology, which are implicitly and explicitly based on systems theory.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    A Machine Learning approach to Biochemical Reaction Rules Discovery

    Get PDF
    Beyond numerical simulation, the possibility of performing symbolic computation on bio-molecular interaction networks opens the way to the design of new automated reasoning tools for biologists/modelers. The Biochemical Abstract machine BIOCHAM provides a precise semantics to biomolecular interaction maps as concurrent transition systems. Based on this formal semantics, BIOCHAM offers a compositional rule-based language for modeling biochemical systems, and an original query language based on temporal logic for expressing biological queries about reachability, checkpoints, oscillations or stability. Turning the temporal logic query language into a specification language for expressing the observed behavior of the system (in wild-life and mutated organisms) makes it possible to use machine learning techniques for completing or correcting biological models semi-automatically. Machine learning from temporal logic formulae is quite new however, both from the machine learning perspective and from the Systems Biology perspective. In this paper, we report on the machine learning system of BIOCHAM which allows to discover, on the one hand, interaction rules from a partial model with constraints on the system behavior expressed in temporal logic, and on the other hand, kinetic parameter values from a temporal logic specification with constraints on numerical concentrations
    • …
    corecore