33,371 research outputs found

    Logic of paradoxes in classical set theories

    Get PDF

    Strong Types for Direct Logic

    Get PDF
    This article follows on the introductory article “Direct Logic for Intelligent Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems to be proved including the Formal Consistency of Mathematics. Also, Strong Types are extremely important in Direct Logic because they block all known paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct Logic safer for use in Intelligent Applications by preventing security holes. Inconsistency Robustness is performance of information systems with pervasively inconsistent information. Inconsistency Robustness of the community of professional mathematicians is their performance repeatedly repairing contradictions over the centuries. In the Inconsistency Robustness paradigm, deriving contradictions has been a progressive development and not “game stoppers.” Contradictions can be helpful instead of being something to be “swept under the rug” by denying their existence, which has been repeatedly attempted by authoritarian theoreticians (beginning with some Pythagoreans). Such denial has delayed mathematical development. This article reports how considerations of Inconsistency Robustness have recently influenced the foundations of mathematics for Computer Science continuing a tradition developing the sociological basis for foundations. Mathematics here means the common foundation of all classical mathematical theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers, Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning that up a unique isomorphism there is only one model that satisfies the respective axioms. Good evidence for the consistency Classical Direct Logic derives from how it blocks the known paradoxes of classical mathematics. Humans have spent millennia devising paradoxes for classical mathematics. Having a powerful system like Direct Logic is important in computer science because computers must be able to formalize all logical inferences (including inferences about their own inference processes) without requiring recourse to human intervention. Any inconsistency in Classical Direct Logic would be a potential security hole because it could be used to cause computer systems to adopt invalid conclusions. After [Church 1934], logicians faced the following dilemma: • 1st order theories cannot be powerful lest they fall into inconsistency because of Church’s Paradox. • 2nd order theories contravene the philosophical doctrine that theorems must be computationally enumerable. The above issues can be addressed by requiring Mathematics to be strongly typed using so that: • Mathematics self proves that it is “open” in the sense that theorems are not computationally enumerable. • Mathematics self proves that it is formally consistent. • Strong mathematical theories for Natural Numbers, Ordinals, Set Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, meaning that every true proposition is provable and every proposition is either provable or disprovable. Furthermore, theorems of these theories are not enumerable by a provably total procedure

    Strong Types for Direct Logic

    Get PDF
    This article follows on the introductory article “Direct Logic for Intelligent Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems to be proved including the Formal Consistency of Mathematics. Also, Strong Types are extremely important in Direct Logic because they block all known paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct Logic safer for use in Intelligent Applications by preventing security holes. Inconsistency Robustness is performance of information systems with pervasively inconsistent information. Inconsistency Robustness of the community of professional mathematicians is their performance repeatedly repairing contradictions over the centuries. In the Inconsistency Robustness paradigm, deriving contradictions has been a progressive development and not “game stoppers.” Contradictions can be helpful instead of being something to be “swept under the rug” by denying their existence, which has been repeatedly attempted by authoritarian theoreticians (beginning with some Pythagoreans). Such denial has delayed mathematical development. This article reports how considerations of Inconsistency Robustness have recently influenced the foundations of mathematics for Computer Science continuing a tradition developing the sociological basis for foundations. Mathematics here means the common foundation of all classical mathematical theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers, Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning that up a unique isomorphism there is only one model that satisfies the respective axioms. Good evidence for the consistency Classical Direct Logic derives from how it blocks the known paradoxes of classical mathematics. Humans have spent millennia devising paradoxes for classical mathematics. Having a powerful system like Direct Logic is important in computer science because computers must be able to formalize all logical inferences (including inferences about their own inference processes) without requiring recourse to human intervention. Any inconsistency in Classical Direct Logic would be a potential security hole because it could be used to cause computer systems to adopt invalid conclusions. After [Church 1934], logicians faced the following dilemma: • 1st order theories cannot be powerful lest they fall into inconsistency because of Church’s Paradox. • 2nd order theories contravene the philosophical doctrine that theorems must be computationally enumerable. The above issues can be addressed by requiring Mathematics to be strongly typed using so that: • Mathematics self proves that it is “open” in the sense that theorems are not computationally enumerable. • Mathematics self proves that it is formally consistent. • Strong mathematical theories for Natural Numbers, Ordinals, Set Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, meaning that every true proposition is provable and every proposition is either provable or disprovable. Furthermore, theorems of these theories are not enumerable by a provably total procedure

    Non‐Classical Knowledge

    Get PDF
    The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory validating all these principles by combining Hartry Field's theory of truth with a modal enrichment developed for a different purpose by Michael Caie. The only casualty is classical logic: the theory avoids paradox by using a weaker-than-classical K3 logic. I then assess the philosophical merits of this approach. I argue that, unlike the traditional semantic paradoxes involving extensional notions like truth, its plausibility depends on the way in which sentences are referred to--whether in natural languages via direct sentential reference, or in mathematical theories via indirect sentential reference by Gödel coding. In particular, I argue that from the perspective of natural language, my non-classical treatment of knowledge as a predicate is plausible, while from the perspective of mathematical theories, its plausibility depends on unresolved questions about the limits of our idealized deductive capacities

    Inconsistency, paraconsistency and ω-inconsistency

    Get PDF
    In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentin

    Theories of truth based on four-valued infectious logics

    Get PDF
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least some of these sentences as infectious. This leads us to consider four distinct four-valued logics: one where truth-value gaps are infectious, but gluts are not; one where truth-value gluts are infectious, but gaps are not; and two logics where both gluts and gaps are infectious, in some sense. Additionally, we focus on the proof theory of these systems, by offering a discussion of two related topics. On the one hand, we prove some limitations regarding the possibility of providing standard Gentzen sequent calculi for these systems, by dualizing and extending some recent results for infectious logics. On the other hand, we provide sound and complete four-sided sequent calculi, arguing that the most important technical and philosophical features taken into account to usually prefer standard calculi are, indeed, enjoyed by the four-sided systems

    A recovery operator for non-transitive approaches

    Get PDF
    In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Szmuc, Damián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentin
    corecore