3,053 research outputs found

    Intersection types for unbind and rebind

    Full text link
    We define a type system with intersection types for an extension of lambda-calculus with unbind and rebind operators. In this calculus, a term with free variables, representing open code, can be packed into an "unbound" term, and passed around as a value. In order to execute inside code, an unbound term should be explicitly rebound at the point where it is used. Unbinding and rebinding are hierarchical, that is, the term can contain arbitrarily nested unbound terms, whose inside code can only be executed after a sequence of rebinds has been applied. Correspondingly, types are decorated with levels, and a term has type decorated with k if it needs k rebinds in order to reduce to a value. With intersection types we model the fact that a term can be used differently in contexts providing different numbers of unbinds. In particular, top-level terms, that is, terms not requiring unbinds to reduce to values, should have a value type, that is, an intersection type where at least one element has level 0. With the proposed intersection type system we get soundness under the call-by-value strategy, an issue which was not resolved by previous type systems.Comment: In Proceedings ITRS 2010, arXiv:1101.410

    Call-by-value non-determinism in a linear logic type discipline

    Get PDF
    We consider the call-by-value lambda-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction

    Retractions in Intersection Types

    Get PDF
    This paper deals with retraction - intended as isomorphic embedding - in intersection types building left and right inverses as terms of a lambda calculus with a bottom constant. The main result is a necessary and sufficient condition two strict intersection types must satisfy in order to assure the existence of two terms showing the first type to be a retract of the second one. Moreover, the characterisation of retraction in the standard intersection types is discussed.Comment: In Proceedings ITRS 2016, arXiv:1702.0187

    Introduction to linear logic and ludics, part II

    Full text link
    This paper is the second part of an introduction to linear logic and ludics, both due to Girard. It is devoted to proof nets, in the limited, yet central, framework of multiplicative linear logic and to ludics, which has been recently developped in an aim of further unveiling the fundamental interactive nature of computation and logic. We hope to offer a few computer science insights into this new theory

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*
    corecore