231,873 research outputs found

    Learning Weak Constraints in Answer Set Programming

    Get PDF
    This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Fages' Theorem and Answer Set Programming

    Full text link
    We generalize a theorem by Francois Fages that describes the relationship between the completion semantics and the answer set semantics for logic programs with negation as failure. The study of this relationship is important in connection with the emergence of answer set programming. Whenever the two semantics are equivalent, answer sets can be computed by a satisfiability solver, and the use of answer set solvers such as smodels and dlv is unnecessary. A logic programming representation of the blocks world due to Ilkka Niemelae is discussed as an example

    Tight Logic Programs

    Full text link
    This note is about the relationship between two theories of negation as failure -- one based on program completion, the other based on stable models, or answer sets. Francois Fages showed that if a logic program satisfies a certain syntactic condition, which is now called ``tightness,'' then its stable models can be characterized as the models of its completion. We extend the definition of tightness and Fages' theorem to programs with nested expressions in the bodies of rules, and study tight logic programs containing the definition of the transitive closure of a predicate.Comment: To appear in Special Issue of the Theory and Practice of Logic Programming Journal on Answer Set Programming, 200
    • …
    corecore