1,636 research outputs found

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of events—the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    A heterogeneous computer vision architecture: implementation issues

    Get PDF
    The prototype of a heterogeneous architecture is currently being built. The architecture is aimed at video-rate computing and is based on a message passing MIMD topology at the top level-transputer based-and on VLSI associative processor arrays (APA, SIMD structure) for low level image processing tasks. The APA structure is implemented through a set of 4 VLSI chips (GLiTCH) containing 64 1-bit processing elements each. This communication addresses some issues concerning the implementation of the first prototype, namely those related to: • the design and integration of the APA controller unit, which provides the required interface between the APA, the MIMD topology and the video image interface: • the evaluation of the GLiTCH chip through an emulator based on transputers and fast programmable devices; the emulator was designed to be flexible enough to evaluate later modifications to the GLiTCH design; • the design of an integrated set of software development tools containing a structured editor-syntax oriented, with a visual interface/programming interface-and a cross compiler and debugger

    Monitoring Method Call Sequences using Annotations

    Get PDF
    In this paper we introduce JMSeq, a Java-based tool for the specification and runtime verification via monitoring of sequences of possibly nested method calls. JMSeq provides a simple but expressive way to specify the sequential execution of a Java program using code annotations via user-given sequences of methods calls. Similar to many monitoring-oriented environments, verification in JMSeq is done at run- time, but differently from all other approaches based on aspect-oriented programming, JMSeq does not use code instrumentation, and therefore is suitable for component-based software verification
    corecore