58 research outputs found

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Bayesian inference application to burglary detection

    Get PDF
    Real time motion tracking is very important for video analytics. But very little research has been done in identifying the top-level plans behind the atomic activities evident in various surveillance footages [61]. Surveillance videos can contain high level plans in the form of complex activities [61]. These complex activities are usually a combination of various articulated activities like breaking windshield, digging, and non-articulated activities like walking, running. We have developed a Bayesian framework for recognizing complex activities like burglary. This framework (belief network) is based on an expectation propagation algorithm [8] for approximate Bayesian inference. We provide experimental results showing the application of our framework for automatically detecting burglary from surveillance videos in real time

    Probabilistic inductive constraint logic

    Get PDF
    AbstractProbabilistic logical models deal effectively with uncertain relations and entities typical of many real world domains. In the field of probabilistic logic programming usually the aim is to learn these kinds of models to predict specific atoms or predicates of the domain, called target atoms/predicates. However, it might also be useful to learn classifiers for interpretations as a whole: to this end, we consider the models produced by the inductive constraint logic system, represented by sets of integrity constraints, and we propose a probabilistic version of them. Each integrity constraint is annotated with a probability, and the resulting probabilistic logical constraint model assigns a probability of being positive to interpretations. To learn both the structure and the parameters of such probabilistic models we propose the system PASCAL for "probabilistic inductive constraint logic". Parameter learning can be performed using gradient descent or L-BFGS. PASCAL has been tested on 11 datasets and compared with a few statistical relational systems and a system that builds relational decision trees (TILDE): we demonstrate that this system achieves better or comparable results in terms of area under the precision–recall and receiver operating characteristic curves, in a comparable execution time

    Stochastic Reasoning with Action Probabilistic Logic Programs

    Get PDF
    In the real world, there is a constant need to reason about the behavior of various entities. A soccer goalie could benefit from information available about past penalty kicks by the same player facing him now. National security experts could benefit from the ability to reason about behaviors of terror groups. By applying behavioral models, an organization may get a better understanding about how best to target their efforts and achieve their goals. In this thesis, we propose action probabilistic logic (or ap-) programs, a formalism designed for reasoning about the probability of events whose inter-dependencies are unknown. We investigate how to use ap-programs to reason in the kinds of scenarios described above. Our approach is based on probabilistic logic programming, a well known formalism for reasoning under uncertainty, which has been shown to be highly flexible since it allows imprecise probabilities to be specified in the form of intervals that convey the inherent uncertainty in the knowledge. Furthermore, no independence assumptions are made, in contrast to many of the probabilistic reasoning formalisms that have been proposed. Up to now, all work in probabilistic logic programming has focused on the problem of entailment, i.e., verifying if a given formula follows from the available knowledge. In this thesis, we argue that other problems also need to be solved for this kind of reasoning. The three main problems we address are: Computing most probable worlds: what is the most likely set of actions given the current state of affairs?; answering abductive queries: how can we effect changes in the environment in order to evoke certain desired actions?; and Reasoning about promises: given the importance of promises and how they are fulfilled, how can we incorporate quantitative knowledge about promise fulfillment in ap-programs? We address different variants of these problems, propose exact and heuristic algorithms to scalably solve them, present empirical evaluations of their performance, and discuss their application in real world scenarios

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF
    corecore