20 research outputs found

    ClioPatria: A SWI-Prolog Infrastructure for the Semantic Web

    Get PDF
    ClioPatria is a comprehensive semantic web development framework based on SWI-Prolog. SWI-Prolog provides an efficient C-based main-memory RDF store that is designed to cooperate naturally and efficiently with Prolog, realizing a flexible RDF-based environment for rule based programming. ClioPatria extends this core with a SPARQL and LOD server, an extensible web frontend to manage the server, browse the data, query the data using SPARQL and Prolog and a Git-based plugin manager. The ability to query RDF using Prolog provides query composition and smooth integration with application logic. ClioPatria is primarily positioned as a prototyping platform for exploring novel ways of reasoning with RDF data. It has been used in several research projects in order to perform tasks such as data integration and enrichment and semantic search

    Effectively Solving NP-SPEC Encodings by Translation to ASP

    Get PDF
    NP-SPEC is a language for specifying problems in NP in a declarative way. Despite the fact that the semantics of the language was given by referring to Datalog with circumscription, which is very close to ASP, so far the only existing implementations are by means of ECLiPSe Prolog and via Boolean satisfiability solvers. In this paper, we present translations from NP-SPEC into ASP, and provide an experimental evaluation of existing implementations and the proposed translations to ASP using various ASP solvers. The results show that translating to ASP clearly has an edge over the existing translation into SAT, which involves an intrinsic grounding process. We also argue that it might be useful to incorporate certain language constructs of NPSPEC into mainstream ASP

    Semantic Web 0 (0) 1 1 IOS Press ClioPatria: A SWI-Prolog Infrastructure for the Semantic Web

    Get PDF
    Abstract. ClioPatria is a comprehensive semantic web development framework based on SWI-Prolog. SWI-Prolog provides an efficient C-based main-memory RDF store that is designed to cooperate naturally and efficiently with Prolog, realizing a flexible RDF-based environment for rule based programming. ClioPatria extends this core with a SPARQL and LOD server, an extensible web frontend to manage the server, browse the data, query the data using SPARQL and Prolog and a Git-based plugin manager. The ability to query RDF using Prolog provides query composition and smooth integration with application logic. ClioPatria is primarily positioned as a prototyping platform for exploring novel ways of reasoning with RDF data. It has been used in several research projects in order to perform tasks such as data integration and enrichment and semantic search

    A Maximum Satisfiability Based Approach to Bi-Objective Boolean Optimization

    Get PDF
    Many real-world problem settings give rise to NP-hard combinatorial optimization problems. This results in a need for non-trivial algorithmic approaches for finding optimal solutions to such problems. Many such approaches—ranging from probabilistic and meta-heuristic algorithms to declarative programming—have been presented for optimization problems with a single objective. Less work has been done on approaches for optimization problems with multiple objectives. We present BiOptSat, an exact declarative approach for finding so-called Pareto-optimal solutions to bi-objective optimization problems. A bi-objective optimization problem arises for example when learning interpretable classifiers and the size, as well as the classification error of the classifier should be taken into account as objectives. Using propositional logic as a declarative programming language, we seek to extend the progress and success in maximum satisfiability (MaxSAT) solving to two objectives. BiOptSat can be viewed as an instantiation of the lexicographic method and makes use of a single SAT solver that is preserved throughout the entire search procedure. It allows for solving three tasks for bi-objective optimization: finding a single Pareto-optimal solution, finding one representative solution for each Pareto point, and enumerating all Pareto-optimal solutions. We provide an open-source implementation of five variants of BiOptSat, building on different algorithms proposed for MaxSAT. Additionally, we empirically evaluate these five variants, comparing their runtime performance to that of three key competing algorithmic approaches. The empirical comparison in the contexts of learning interpretable decision rules and bi-objective set covering shows practical benefits of our approach. Furthermore, for the best-performing variant of BiOptSat, we study the effects of proposed refinements to determine their effectiveness

    Model-Driven Development of Aspect-Oriented Software Architectures

    Full text link
    The work presented in this thesis of master is an approach that takes advantage of the Model-Driven Development approach for developing aspect-oriented software architectures. A complete MDD support for the PRISMA approach is defined by providing code generation, verification and reusability properties.PĂŠrez BenedĂ­, J. (2007). Model-Driven Development of Aspect-Oriented Software Architectures. http://hdl.handle.net/10251/12451Archivo delegad

    Refined Core Relaxations for Core-Guided Maximum Satisfiability Algorithms

    Get PDF
    The so-called declarative approach has proven to be a viable paradigm for solving various real-world NP-hard optimization problems in practice. In the declarative approach, the problem at hand is encoded using a mathematical constraint language, and an algorithm for the specific language is employed to obtain optimal solutions to an instance of the problem. One of the most viable declarative optimization paradigms of the last years is maximum satisfiability (MaxSAT) with propositional logic as the constraint language. So-called core-guided MaxSAT algorithms are arguably one of the most effective MaxSAT-solving paradigms in practice today. Core-guided algorithms iteratively detect and rule out (relax) sources of inconsistencies (so-called unsatisfiable cores) in the instance being solved. Especially effective are recent algorithmic variants of the core-guided approach which employ so-called soft cardinality constraints for ruling out inconsistencies. In this thesis, we present a structure-sharing technique for the cardinality-based core relaxation steps performed by core-guided MaxSAT solvers. The technique aims at reducing the inherent growth in the size of the propositional formula resulting from the core relaxation steps. Additionally, it enables more efficient reasoning over the relationships between different cores. We empirically evaluate the proposed technique on two different core-guided algorithms and provide open-source implementations of our solvers employing the technique. Our results show that the proposed structure-sharing can improve the performance of the algorithms both in theory and in practice
    corecore