1,142 research outputs found

    Blow up and Blur constructions in Algebraic Logic

    Full text link
    The idea in the title is to blow up a finite structure, replacing each 'colour or atom' by infinitely many, using blurs to represent the resulting term algebra, but the blurs are not enough to blur the structure of the finite structure in the complex algebra. Then, the latter cannot be representable due to a {finite- infinite} contradiction. This structure can be a finite clique in a graph or a finite relation algebra or a finite cylindric algebra. This theme gives examples of weakly representable atom structures that are not strongly representable. Many constructions existing in the literature are placed in a rigorous way in such a framework, properly defined. This is the essence too of construction of Monk like-algebras, one constructs graphs with finite colouring (finitely many blurs), converging to one with infinitely many, so that the original algebra is also blurred at the complex algebra level, and the term algebra is completey representable, yielding a representation of its completion the complex algebra. A reverse of this process exists in the literature, it builds algebras with infinite blurs converging to one with finite blurs. This idea due to Hirsch and Hodkinson, uses probabilistic methods of Erdos to construct a sequence of graphs with infinite chromatic number one that is 2 colourable. This construction, which works for both relation and cylindric algebras, further shows that the class of strongly representable atom structures is not elementary.Comment: arXiv admin note: text overlap with arXiv:1304.114

    Unifiability and Structural Completeness in Relation Algebras and in Products of Modal Logic S5

    Get PDF
    Unifiability of terms (and formulas) and structural completeness in the variety of relation algebras RA and in the products of modal logic S5 is investigated. Nonunifiable terms (formulas) which are satisfiable in varieties (in logics) are exhibited. Consequently, RA and products of S5 as well as representable diagonal-free n-dimensional cylindric algebras, RDfn, are almost structurally complete but not structurally complete. In case of S5ⁿ a basis for admissible rules and the form of all passive rules are provided

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Group decision making and quality-of-information in e-Health systems

    Get PDF
    Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One`s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSS), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision making process. In this way it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Variations on a Theme: A Bibliography on Approaches to Theorem Proving Inspired From Satchmo

    Get PDF
    This articles is a structured bibliography on theorem provers, approaches to theorem proving, and theorem proving applications inspired from Satchmo, the model generation theorem prover developed in the mid 80es of the 20th century at ECRC, the European Computer- Industry Research Centre. Note that the bibliography given in this article is not exhaustive
    corecore