58,399 research outputs found

    Data-driven Abstractions for Verification of Deterministic Systems

    Full text link
    A common technique to verify complex logic specifications for dynamical systems is the construction of symbolic abstractions: simpler, finite-state models whose behaviour mimics the one of the systems of interest. Typically, abstractions are constructed exploiting an accurate knowledge of the underlying model: in real-life applications, this may be a costly assumption. By sampling random \ell-step trajectories of an unknown system, we build an abstraction based on the notion of \ell-completeness. We newly define the notion of probabilistic behavioural inclusion, and provide probably approximately correct (PAC) guarantees that this abstraction includes all behaviours of the concrete system, for finite and infinite time horizon, leveraging the scenario theory for non convex problems. Our method is then tested on several numerical benchmarks

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    Robust Decentralized Abstractions for Multiple Mobile Manipulators

    Full text link
    This paper addresses the problem of decentralized abstractions for multiple mobile manipulators with 2nd order dynamics. In particular, we propose decentralized controllers for the navigation of each agent among predefined regions of interest in the workspace, while guaranteeing at the same time inter-agent collision avoidance and connectivity maintenance for a subset of initially connected agents. In that way, the motion of the coupled multi-agent system is abstracted into multiple finite transition systems for each agent, which are then suitable for the application of temporal logic-based high level plans. The proposed methodology is decentralized, since each agent uses local information based on limited sensing capabilities. Finally, simulation studies verify the validity of the approach.Comment: Accepted for publication in the IEEE Conference on Decision and Control, Melbourne, Australia, 201

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming
    corecore