15,177 research outputs found

    SWISH: SWI-Prolog for Sharing

    Full text link
    Recently, we see a new type of interfaces for programmers based on web technology. For example, JSFiddle, IPython Notebook and R-studio. Web technology enables cloud-based solutions, embedding in tutorial web pages, atractive rendering of results, web-scale cooperative development, etc. This article describes SWISH, a web front-end for Prolog. A public website exposes SWI-Prolog using SWISH, which is used to run small Prolog programs for demonstration, experimentation and education. We connected SWISH to the ClioPatria semantic web toolkit, where it allows for collaborative development of programs and queries related to a dataset as well as performing maintenance tasks on the running server and we embedded SWISH in the Learn Prolog Now! online Prolog book.Comment: International Workshop on User-Oriented Logic Programming (IULP 2015), co-located with the 31st International Conference on Logic Programming (ICLP 2015), Proceedings of the International Workshop on User-Oriented Logic Programming (IULP 2015), Editors: Stefan Ellmauthaler and Claudia Schulz, pages 99-113, August 201

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Improving Prolog programs: Refactoring for Prolog

    Full text link
    Refactoring is an established technique from the object-oriented (OO) programming community to restructure code: it aims at improving software readability, maintainability and extensibility. Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to Logic Programming until now. This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing refactorings classified according to scope. Some of the refactorings have been adapted from the OO-paradigm, while others have been specifically designed for Prolog. The discrepancy between intended and operational semantics in Prolog is also addressed by some of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with applying ViPReSS to a large Prolog legacy system is reported. The main conclusion is that refactoring is both a viable technique in Prolog and a rather desirable one.Comment: To appear in Theory and Practice of Logic Programming (TPLP
    corecore