423 research outputs found

    Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems

    Get PDF
    We study the problem of adaptive control in partially observable linear dynamical systems. We propose a novel algorithm, adaptive control online learning algorithm (AdaptOn), which efficiently explores the environment, estimates the system dynamics episodically and exploits these estimates to design effective controllers to minimize the cumulative costs. Through interaction with the environment, AdaptOn deploys online convex optimization to optimize the controller while simultaneously learning the system dynamics to improve the accuracy of controller updates. We show that when the cost functions are strongly convex, after T times step of agent-environment interaction, AdaptOn achieves regret upper bound of polylog(T). To the best of our knowledge, AdaptOn is the first algorithm which achieves polylog(T) regret in adaptive control of unknown partially observable linear dynamical systems which includes linear quadratic Gaussian (LQG) control

    Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems

    Get PDF
    We study the problem of adaptive control in partially observable linear dynamical systems. We propose a novel algorithm, adaptive control online learning algorithm (AdaptOn), which efficiently explores the environment, estimates the system dynamics episodically and exploits these estimates to design effective controllers to minimize the cumulative costs. Through interaction with the environment, AdaptOn deploys online convex optimization to optimize the controller while simultaneously learning the system dynamics to improve the accuracy of controller updates. We show that when the cost functions are strongly convex, after T times step of agent-environment interaction, AdaptOn achieves regret upper bound of polylog(T). To the best of our knowledge, AdaptOn is the first algorithm which achieves polylog(T) regret in adaptive control of unknown partially observable linear dynamical systems which includes linear quadratic Gaussian (LQG) control

    Regret Minimization in Partially Observable Linear Quadratic Control

    Get PDF
    We study the problem of regret minimization in partially observable linear quadratic control systems when the model dynamics are unknown a priori. We propose ExpCommit, an explore-then-commit algorithm that learns the model Markov parameters and then follows the principle of optimism in the face of uncertainty to design a controller. We propose a novel way to decompose the regret and provide an end-to-end sublinear regret upper bound for partially observable linear quadratic control. Finally, we provide stability guarantees and establish a regret upper bound of O(T^(2/3)) for ExpCommit, where T is the time horizon of the problem

    Optimal Rates for Bandit Nonstochastic Control

    Full text link
    Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control are foundational and extensively researched problems in optimal control. We investigate LQR and LQG problems with semi-adversarial perturbations and time-varying adversarial bandit loss functions. The best-known sublinear regret algorithm of~\cite{gradu2020non} has a T34T^{\frac{3}{4}} time horizon dependence, and its authors posed an open question about whether a tight rate of T\sqrt{T} could be achieved. We answer in the affirmative, giving an algorithm for bandit LQR and LQG which attains optimal regret (up to logarithmic factors) for both known and unknown systems. A central component of our method is a new scheme for bandit convex optimization with memory, which is of independent interest

    Dynamical Linear Bandits

    Get PDF
    In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order O~(dT(1βˆ’Οβ€Ύ)3/2)\widetilde{\mathcal{O}} \Big( \frac{d \sqrt{T}}{(1-\overline{\rho})^{3/2}} \Big), where ρ‾\overline{\rho} is a measure of the stability of the system, and dd is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines

    Dynamical Linear Bandits

    Full text link
    In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order O~(dT(1βˆ’Οβ€Ύ)3/2)\widetilde{\mathcal{O}} \Big( \frac{d \sqrt{T}}{(1-\overline{\rho})^{3/2}} \Big), where ρ‾\overline{\rho} is a measure of the stability of the system, and dd is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines

    Introduction to Online Nonstochastic Control

    Full text link
    This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.Comment: Draft; comments/suggestions welcome at [email protected]
    • …
    corecore