8 research outputs found

    PROLIFERATION, MIGRATION, AND SURVIVAL OF CELLS IN THE TELENCEPHALON OF THE BALL PYTHON, PYTHON REGIUS

    Get PDF
    Reptiles exhibit neurogenesis throughout the brain during adulthood. However, very few studies have quantified telencephalon-wide neurogenesis in adulthood, and no studies have performed these investigations in snakes. Quantifying neurogenesis in the adult snake is essential to understanding class-wide adult neurogenesis and providing insight into the evolution of this trait. The thymidine analog 5-bromo-2’-deoxyuridine (BrdU) was used to quantify cell proliferation, migration, and survival in the ball python (Python regius). First, to determine the proper dose of BrdU for injection we subcutaneously injected 50mg/kg, 100mg/kg, and 250mg/kg into 15 adult male P. regius. We found the 250mg/kg dose marked significantly more cells than the 50mg/kg dose, but not the 100mg/kg dose. Then we subcutaneously injected 100mg/kg BrdU into 15 juvenile male P. regius at 3 different time points (2 days, 2 weeks, 2 months) prior to sacrifice to quantify proliferation, migration, and survival of cells in several telencephalic subregions. After sectioning and immunohistochemical staining, we found proliferation to be highest in the accessory olfactory bulb (AoB), retrobulbar regions (AD, AV), dorsal ventricular ridge (DVR), and dorsolateral amygdala/lateral amygdala (DLA/LA). Of the proliferating cells, the proportions of cells that migrated after 2 weeks were highest in the ventral lateral region (VL), anterior medial and lateral cortices (aMC, aLC), and anterior NS (aNS). After 2 months, the highest proportional survival was in the AoB, aLC, aMC, aNS, DVR, and ventral medial regions (VM). Regions involved in long-term functions like spatial memory may require less proliferation and longer survival, while regions involved in short-term functions undergo more proliferation with higher relative attrition

    From locomotor behavior to cerebellum evolution and development in squamate models

    Get PDF
    Locomotor behavior, the entire set of movements an individual utilizes to modify its spatial location in time, is a crucial attribute of an organism’s life. Though not responsible for movement initiation or rhythmic locomotor pattern generation, the cerebellum, an ancient and functionally conserved feature of the vertebrate brain, plays a key role in many aspects of motor performance. Variations in its morphology, relative size and cortical organization, likely resulting from divergent developmental programs, have been observed even in closely related vertebrate species, often reflecting a tight linkage between cerebellar organization and functional demands associated with ecologically relevant factors and distinct behavioral traits. Taking advantage of the extraordinary ecomorphological diversity of squamates (lizards and snakes) and adopting a multidisciplinary approach, this thesis explores the impact of locomotor behavior on squamate brain, particularly on different levels of cerebellar biological organization, and investigates cerebellar morphogenesis in two squamate species to gain insights on the developmental mechanisms potentially responsible for squamate cerebellar divergence. Along with significant variations in cerebellar morphology and relative size across squamates, this thesis first highlights a wide heterogeneity in Purkinje cell (PC) spatial layout as well as in gene expression pattern, all correlating with specific locomotor behaviors, unveiling unique relationships between a major evolutionary transition and organ specialization in vertebrates. At the developmental level, the thesis indicates that developmental features considered, so far, exclusive hallmarks of avian and mammalian cerebellogenesis characterize squamate cerebellar morphogenesis. Furthermore, the thesis suggests that variations in the spatiotemporal patterning of different cerebellar neurons could be, at least partially, at the base of the large phenotypic diversification of the squamate cerebellum. Finally, this thesis reveals that squamates provide an important framework to expand our knowledge on organ system-ecology relationships and central nervous system (CNS) development and evolution in vertebrates.Eliöiden toimintaan liittyy oleellisena osana niiden kyky liikkua, eli siirtyĂ€ paikasta toiseen erilaisten ruuminosien liikkeiden avulla. Pikkuaivot (cerebellum) ovat hyvin oleellinen osa selkĂ€rankaisten liikkeen sÀÀtelyĂ€, ja niiden toiminta onkin sĂ€ilynyt peruspiirteiltÀÀn samana selkĂ€rankaisten evoluution aikana. Vaikka pikkuaivojen rooliin ei kuulu liikkeen aloittaminen tai rytmisen liikkeen tahdin sÀÀtely, niillĂ€ on huomattava rooli muussa liikkeen sÀÀtelyssĂ€. TĂ€hĂ€n lukeutuvat esimerkiksi liikkeiden oppiminen ja korjaaminen. Pikkuaivoissa esiintyy hyvin paljon lajien vĂ€listĂ€ vaihtelua, mikĂ€ johtuu todennĂ€köisesti yksilönkehityksen ja sen sÀÀtelyn eroavaisuuksista eri lajeilla. Eroja on havaittavissa niin pikkuaivojen morfologiassa, suhteellisessa koossa kuin myös niiden kuorikerroksen rakenteessa, usein jopa lĂ€hisukuisten lajien vĂ€lillĂ€. NĂ€mĂ€ eroavaisuudet heijastelevatkin usein elĂ€inten erilaisia toiminnallisia tarpeita, liittyen varsinkin kĂ€yttĂ€ytymispiirteisiin sekĂ€ muihin niiden ekologiaan linkittyviin tekijöihin. Suomumatelijoilla (liskoilla ja kÀÀrmeillĂ€) on huomattava laaja kirjos erilaisia ekomorfologioita ja liikkumistapoja. TĂ€mĂ€ vĂ€itöskirja keskittyykin selvittĂ€mÀÀn liikkumistapojen vaikutusta suomumatelijoiden aivoihin sekĂ€ yleisesti ettĂ€ erityisesti pikkuaivoja tarkastellen. Huomio keskittyy pikkuaivoissa sekĂ€ kokonaiskuvan muodostamiseen niiden rakenteesta ettĂ€ niiden yksilönkehitykseen. Yksilönkehityksen suhteen vertailussa ovat kaksi eri suomumatelijoiden edustajaa mahdollisten yksilönkehityksen muutosten mekanismien selvittĂ€miseksi. VĂ€itöskirjatyössĂ€ havaittiin suomumatelijoilla merkittĂ€vÀÀ pikkuaivojen morfologian ja suhteellisen koon lajienvĂ€listĂ€ vaihtelua. TĂ€mĂ€n lisĂ€ksi työn aikana havaittiin huomattavia eroja pikkuaivojen niin sanottujen Purkinjen solujen jĂ€rjestĂ€ytymisessĂ€ sekĂ€ eri geenien luennassa erilaista liikkumistyyppiĂ€ edustavien lajien vĂ€lillĂ€. Purkinjen solujen jĂ€rjestĂ€ytymisen ja geeniluennan havaittiin myös korreloivan erilaisten liikkumistyyppien kanssa, tuoden esiin mielenkiintoisen yhteyden evolutiivisten muutosten ja elinten erikoistumisen vĂ€lillĂ€. Samoin tulokset viittaavat siihen, ettĂ€ linnuille ja nisĂ€kkĂ€ille ainutlaatuisiksi luultuja pikkuaivojen muodostumisen piirteitĂ€ löytyy myös suomumatelijoilta. VĂ€itöskirjatyössĂ€ havaittiin lisĂ€ksi viitteitĂ€ suomumatelijoiden pikkuaivojen monimuotoisuuden taustalla olevista yksilönkehityksen muutoksista. Tulosten valossa on mahdollista, ettĂ€ pikkuaivojen neuronien kaavoituksen ajoituksen ja sijainnin muutokset voisivat ainakin osin olla syy suomumatelijoiden pikkuaivojen monimuotoisuuteen. Laajemmassa mielessĂ€ tulokset tuovat esiin myös suomumatelijoiden erittĂ€in oleellisen roolin selkĂ€rankaisten evoluution tutkimuksessa kahdesta oleellisesta tulokulmasta: selkĂ€rankaisten keskushermoston yksilönkehityksen ja evoluution tutkimus sekĂ€ yleisemmĂ€llĂ€ tasolla elinsysteemien ja ekologian yhteyden selvittĂ€minen

    Le rĂŽle des cellules dopaminergiques dans la locomotion induite par l'olfaction chez la lamproie

    Full text link
    La dĂ©tection de molĂ©cules chimiques par l'odorat est importante pour guider le comportement des animaux. Chez la lamproie marine, Petromyzon marinus, l'olfaction est vitale pour plusieurs fonctions telles que l’alimentation, l’évitement des prĂ©dateurs et la reproduction. Les diffĂ©rents comportements olfactifs de la lamproie sont les mieux caractĂ©risĂ©s parmi tous les vertĂ©brĂ©s aquatiques et ils font l’objet du premier chapitre de l’introduction. Les circuits du cerveau responsables des mouvements produits lors de la dĂ©tection de stimuli olfactifs ont Ă©tĂ© examinĂ©s chez la lamproie. Des Ă©tudes rĂ©centes rĂ©vĂšlent qu’il existe deux organes olfactifs pĂ©riphĂ©riques ayant des projections parallĂšles qui innervent des parties distinctes du bulbe olfactif (BO). Dans les deux cas, le signal olfactif atteint Ă©ventuellement les cellules rĂ©ticulospinales (RS), qui activent les rĂ©seaux locomoteurs spinaux. La littĂ©rature portant sur ces circuits neuronaux est dĂ©crite dans le deuxiĂšme chapitre introductif. Le substrat neuronal par lequel le signal olfactif est transmis aux cellules RS n'est pas complĂštement caractĂ©risĂ© mais des donnĂ©es du laboratoire Dubuc suggĂšrent que le tubercule postĂ©rieur (TP) serait une cible importante des projections du BO. Puisque cette rĂ©gion contient des neurones dopaminergiques (DA) impliquĂ©s dans le contrĂŽle moteur, l’objectif principal de cette thĂšse Ă©tait de dĂ©terminer leur rĂŽle dans le traitement du signal olfactif et la production de locomotion. Nos rĂ©sultats ont permis de caractĂ©riser l'innervation DA du BO de la lamproie et d’observer que les neurones DA du TP projettent Ă  la partie mĂ©diane du BO chez les animaux de stade larvaire et adulte. De plus, l’activation de rĂ©cepteurs D2 dans cette rĂ©gion diminue la transmission du signal olfactif aux cellules RS. Dans le reste du BO, des neurones DA apparaissent au stade adulte. Ces observations sont rapportĂ©es dans le premier chapitre des rĂ©sultats. Puisque les neurones DA du TP peuvent moduler la transmission olfactomotrice au niveau du BO, ils pourraient aussi jouer un rĂŽle via leurs projections connues vers le tronc cĂ©rĂ©bral. Le deuxiĂšme chapitre des rĂ©sultats se penche donc sur l’implication du TP dans le relai de l’information olfactive au systĂšme moteur. L’étude des projections du BO montre que les neurones DA sont ciblĂ©s, incluant ceux qui projettent Ă  la rĂ©gion locomotrice mĂ©sencĂ©phalique (RLM), responsable de l’initiation et du contrĂŽle de la locomotion. Aussi, la stimulation olfactive active des neurones du TP qui projettent Ă  la RLM. Dans une prĂ©paration dont la tĂȘte est fixĂ©e mais le corps peut se dĂ©placer, la stimulation olfactive induit de la nage en recrutant simultanĂ©ment le TP et les cellules RS. Nous montrons aussi que le TP est recrutĂ© durant la nage survenant spontanĂ©ment, ce qui indique que cette rĂ©gion joue un rĂŽle important dans le contrĂŽle locomoteur. Cette thĂšse rĂ©vĂšle que les neurones DA du TP peuvent 1) ĂȘtre activĂ©s par la dĂ©tection d’odeurs et ensuite 2) moduler la transmission au niveau du BO ainsi que 3) recruter la RLM pour produire un Ă©pisode de nage. Ces donnĂ©es suggĂšrent qu’ils occupent une position-clĂ© dans l’intĂ©gration sensorimotrice des stimuli olfactifs puisqu’ils encodent Ă  la fois de l’information sensorielle et motrice.The detection of chemical molecules by smell is important in guiding the behavior of animals. In the sea lamprey, Petromyzon marinus, olfaction is vital for several functions such as feeding, predator avoidance and reproduction. The various olfactory behaviors of the lamprey are the best characterized among all aquatic vertebrates and they were reviewed in the first chapter of the introduction. The brain circuitry responsible for producing movement upon sensing olfactory stimuli has been examined in lamprey. Recent studies revealed that there are two peripheral olfactory epithelia with parallel projections that reach distinct parts of the olfactory bulb (OB). In both cases, the olfactory signal eventually reaches reticulospinal (RS) cells, which activate the locomotor networks of the spinal cord. The literature describing these neural circuits is thoroughly reviewed in the second chapter of the introduction. The neuronal substrate by which the olfactory signal is transmitted to RS cells is not fully characterized, but data from the Dubuc laboratory suggest that the posterior tubercle (PT) may be an important target for OB projections. Since this region contains dopaminergic (DA) neurons involved in motor control, the main objective of this thesis was to determine their role in olfactory signal processing and the production of locomotion. Our results have allowed to characterize the DA innervation of the lamprey OB and show that DA neurons of the PT send projections to the medial part of the OB in larval and adult animals. In addition, the activation of D2 receptors in this region decreases the transmission of the olfactory signal to RS cells. In the rest of the OB, DA neurons appear in adult animals. These observations are reported in the first chapter of the Results. Since DA neurons of the PT can modulate olfactory-motor transmission at the level of the OB, they could also play a role through existing descending projections to the brainstem. Thus, in the second chapter of the Results, we studied the involvement of the PT in the relay of olfactory information to the motor system. The analysis of OB projections shows that DA neurons are targeted, including those that project to the mesencephalic locomotor region (MLR), which is responsible for initiating and controlling locomotion. Moreover, olfactory stimulation activates PT neurons that project to the MLR. In a head-fixed preparation in which the body moves, olfactory stimulation induces swimming simultaneously with PT and RS cell activity. We also show that the PT is recruited during spontaneously occurring swimming, which indicates that this region plays an important role in locomotor control. This thesis reveals that DA neurons in the PT can 1) be activated following odorant detection and then 2) modulate the transmission at the level of the OB as well as 3) recruit the MLR to produce a swimming episode. These data suggest that they occupy a key position in the sensorimotor integration of olfactory stimuli since they encode both sensory and motor information

    Sensorimotor adjustments after unilateral spinal cord injury in adult rats

    Get PDF
    A variety of behavioural tests were used to examine both sensory and motor function of freely behaving unilaterally spinal cord-injured and uninjured rats. The first experiment was designed to determine whether sensory and motor differences existed between uninjured Fischer, Lewis, Long-Evans, Sprague-Dawley and Wistar rats using endpoint, quantitative kinematic, and kinetic measurements. The second experiment examined differences in sensorimotor responses to cervical spinal cord hemisection in Lewis, Long-Evans and Wistar rats. For the third experiment, reflex and locomotor abilities of unilateral cervical or thoracic spinal cord hemisected Long-Evans rats were determined using endpoint, semi-quantitative kinematic, and kinetic measurements. The fourth experiment was designed to investigate the importance of the rubrospinal tract and ascending dorsal column pathways to overground locomotion. This experiment was conducted to help explain the behavioural observations made following cervical spinal cord hemisection. Furthermore, this experiment examined the effects of combined unilateral rubrospinal and dorsal column injury on overground locomotion using endpoint and kinetic measurements. Finally, the fifth experiment set out to investigate the contribution of tracts running in the ventrolateral spinal cord on overground locomotion in freely behaving Long-Evans rats. These animals were assessed using endpoint and kinetic measurements. The results of these studies revealed that motor and sensory functions are not similar for all uninjured strains of rats. Specifically, Fischer rats tend to have considerable differences in their morphological features and sensorimotor abilities compared to the other strains examined. Results from the other experiments indicate that adult freely behaving female rats develop a characteristic gait when pathways important for locomotion are injured unilaterally, regardless of strain. The rubrospinal tract and ascending dorsal column pathways appear to be important for both skilled and flat-ground locomotion as well as forelimb use while rearing. Pathways traveling within the ventrolateral pathway, however, are not necessary or sufficient for locomotion or limb useage while rearing when injured by themselves. Animals with ventrolateral spinal funiculus injuries regain normal forelimb use and skilled locomotor abilities. Injury to the ventrolateral spinal funiculus, however, results in mild (compared to rubrospinal and dorsal column injured animals) yet long-lasting locomotor changes based on ground reaction force determination. These findings are in agreement with the current opinion that there is a substantial amount of functional redundancy of pathways traveling in the ventral and ventrolateral funiculi

    Noradrenergic control of spinal motor circuitry in two related amphibian species 'Xenopus laevis' and 'Rama temporaria'

    Get PDF
    1. The role of the catecholamine noradrenaline (NA) was examined during fictive swimming in Xenopus laevis tadpoles. 2. The primary effects of the amine in both embryonic and larval Xenopus was to markedly decrease motor frequency whilst simultaneously reducing rostrocaudal delays during swimming. 3. The NA-mediated modulation of swimming activity in Xenopus larvae can be reversed with phentolamine, a non-selective an adrenergic receptor antagonist, suggesting that NA may be acting through either α₁ or α₂ receptors, or a combination of both. 4. Intracellular recordings made from embryo spinal motorneurones revealed that reciprocal inhibitory glycinergic potentials are enhanced by NA. This effect is most prominent in caudal regions of the spinal cord where inhibitory synaptic drive is generally weaker. 5. NA was also found to enhance glycinergic reciprocal inhibition during swimming in larval spinal cord motomeurones. 6. Intracellular recordings, under tetrodotoxin, reveal that NA enhances the occurrence of spontaneous glycinergic inhibitory post synaptic potentials arising from the terminals of inhibitory intemeurones, suggesting that the amine is acting presynaptically to enhance evoked release of glycine during swimming. 7. The effects of NA on swimming frequency and rostrocaudal delay appear to be largely mediated through an enhancement of glycinergic reciprocal inhibition as blockade of glycine receptors with strychnine weakens the ability of the amine affect these parameters of motor output. 8. The effects of NA on motor output were also examined in embryos of the amphibian Rana temporaria. Whilst NA did not obviously affect swimming activity, the amine induced a non-rhythmic pattern of motor activity. 9. The free radical gas, nitric oxide also induced a non-rhythmic pattern of motor discharge that was remarkably similar to that elicited by NA, indicating that this neural messenger may be important for motor control

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag
    corecore