2,019 research outputs found

    Security Analysis and Evaluation of Smart Toys

    Get PDF
    During the last years, interconnectivity and merging the physical and digital technological dimensions have become a topic attracting the interest of the modern world. Internet of Things (IoT) is rapidly evolving as it manages to transform physical devices into communicating agents which can consecutively create complete interconnected systems. A sub-category of the IoT technology is smart toys, which are devices with networking capabilities, created for and used in play. Smart toys’ targeting group is usually children and they attempt to provide a higher level of entertainment and education by offering an enhanced and more interactive experience. Due to the nature and technical limitations of IoT devices, security experts have expressed concerns over the effectiveness and security level of smart devices. The importance of securing IoT devices has an increased weight when it pertains to smart toys, since sensitive information of children and teenagers can potentially be compromised. Furthermore, various security analyses on smart toys have discovered a worryingly high number of important security flaws. The master thesis focuses on the topic of smart toys’ security by first presenting and analyzing the necessary literature background. Furthermore, it presents a case study where a smart toy is selected and analyzed statically and dynamically utilizing a Raspberry Pi. The aim of this thesis is to examine and apply methods of analysis used in the relevant literature, in order to identify security flaws in the examined smart toy. The smart toy is a fitness band whose target consumers involve children and teenagers. The fitness band is communicating through Bluetooth with a mobile device and is accompanied by a mobile application. The mobile application has been installed and tested on an Android device. Finally, the analyses as well as their emerged results are presented and described in detail. Several security risks have been identified indicating that developers must increase their efforts in ensuring the optimal level of security in smart toys. Furthermore, several solutions that could minimize security risks and are related to our findings are suggested, along with potentially interesting topics for future work and further research

    Rail Internet of Things: An Architectural Platform and Assured Requirements Model

    Get PDF
    Given the plethora of individual preferences and requirements of public transport passengers for travel, seating, catering, etc., it becomes very challenging to tailor generic services to individuals’ requirements using the existing service platforms. As tens of thousands of sensors have been already deployed along roadsides and rail tracks, and on buses and trains in many countries, it is expected that the introduction of IP networking will revolutionise the functionality of public transport in general and rail services in particular. In this paper, we propose a new communication paradigm to improve rail services and address the requirement of rail service users: the Rail Internet of Things (RIoT). To the best of our knowledge, it is the first work to define the RIoT and design an architectural platform that includes its components and the data communication channels. Moreover, we develop an assured requirements model using the situation calculus modelling to represent the fundamental requirements for adjustable, decentralised feedback control mechanisms necessary for the RIoT-ready software systems. The developed formal model is applied to demonstrate the design of passenger assistance software that interacts with the RIoT ecosystem and provides passengers with real-time information that is tailored to their requirements with runtime adaptability. Keywords—Assistance; Assured model; Inclusive; IoT; Rail Internet of Things (RIoT); Situation Calculu

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Distributed Ledger based infrastructure for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITS) are proposed as an efficient way to improve performances in transportation systems applying information, communication, and sensor technologies to vehicles and transportation infrastructures. The great amount of vehicles produced data, indeed, can potentially lead to a revolution in ITS development, making them more powerful multifunctional systems. To this purpose, the use of Vehicular Ad-hoc Networks (VANETs) can provide comfort and security to drivers through reliable communications. Meanwhile, distributed ledgers have emerged in recent years radically evolving the way that we used to consider finance, trust in communication and even renewing the concept of data sharing and allowing to establish autonomous, secured, trusted and decentralized systems. In this work an ITS infrastructure based on the combination of different emerging Distributed Ledger Technologies (DLTs) and VANETs is proposed, resulting in a transparent, self-managed and self-regulated system, that is not fully managed by a central authority. The intended design is focused on the user ability to use any type of DLT-based application and to transact using Smart Contracts, but also on the access control and verification over user’s vehicle produced data. Users "smart" transactions are achieved thanks to the Ethereum blockchain, widely used for distributed trusted computation, whilst data sharing and data access is possible thanks to the use of IOTA, a DLT fully designed to operate in the Internet of Things landscape, and IPFS, a protocol and a network that allows to work in a distributed file system. The aim of this thesis is to create a ready-to-work infrastructure based on the hypothesis that every user in the ITS must be able to participate. To evaluate the proposal, an infrastructure implementation is used in different real world use cases, common in Smart Cities and related to the ITS, and performance measurements are carried out for DLTs used

    A Case Study of Edge Computing Implementations: Multi-access Edge Computing, Fog Computing and Cloudlet

    Get PDF
    With the explosive growth of intelligent and mobile devices, the current centralized cloud computing paradigm is encountering difficult challenges. Since the primary requirements have shifted towards implementing real-time response and supporting context awareness and mobility, there is an urgent need to bring resources and functions of centralized clouds to the edge of networks, which has led to the emergence of the edge computing paradigm. Edge computing increases the responsibilities of network edges by hosting computation and services, therefore enhancing performances and improving quality of experience (QoE). Fog computing, multi-access edge computing (MEC), and cloudlet are three typical and promising implementations of edge computing. Fog computing aims to build a system that enables cloud-to-thing service connectivity and works in concert with clouds, MEC is seen as a key technology of the fifth generation (5G) system, and Cloudlet is a micro-data center deployed in close proximity. In terms of deployment scenarios, Fog computing focuses on the Internet of Things (IoT), MEC mainly provides mobile RAN application solutions for 5G systems, and cloudlet offloads computing power at the network edge. In this paper, we present a comprehensive case study on these three edge computing implementations, including their architectures, differences, and their respective application scenario in IoT, 5G wireless systems, and smart edge. We discuss the requirements, benefits, and mechanisms of typical co-deployment cases for each paradigm and identify challenges and future directions in edge computing

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs
    corecore