1,230 research outputs found

    When the Hammer Meets the Nail: Multi-Server PIR for Database-Driven CRN with Location Privacy Assurance

    Full text link
    We show that it is possible to achieve information theoretic location privacy for secondary users (SUs) in database-driven cognitive radio networks (CRNs) with an end-to-end delay less than a second, which is significantly better than that of the existing alternatives offering only a computational privacy. This is achieved based on a keen observation that, by the requirement of Federal Communications Commission (FCC), all certified spectrum databases synchronize their records. Hence, the same copy of spectrum database is available through multiple (distinct) providers. We harness the synergy between multi-server private information retrieval (PIR) and database- driven CRN architecture to offer an optimal level of privacy with high efficiency by exploiting this observation. We demonstrated, analytically and experimentally with deployments on actual cloud systems that, our adaptations of multi-server PIR outperform that of the (currently) fastest single-server PIR by a magnitude of times with information theoretic security, collusion resiliency, and fault-tolerance features. Our analysis indicates that multi-server PIR is an ideal cryptographic tool to provide location privacy in database-driven CRNs, in which the requirement of replicated databases is a natural part of the system architecture, and therefore SUs can enjoy all advantages of multi-server PIR without any additional architectural and deployment costs.Comment: 10 pages, double colum

    Optimal Strategies for Defending Location Inference Attack in Database-driven CRNs

    Get PDF
    Database-driven Cognitive Radio Network (CRN) has been proposed to replace the requirement of spectrum sensing of terminal devices so that the operation of users is simplified. However, location privacy issues introduce a big challenge for securing database-driven CRN due to spectrum availability information. The existing works consider either PU or SU\u27s location privacy while not the both. In this study, we identify a unified attack framework in which a curious user could infer a target\u27s location based on the spectrum availability/utilization information. Further, we propose a location privacy protection mechanism, which allows both SU and PU to protect their location privacy by adopting a series of countermeasures. The location privacy and spectrum utility are the trade-off. In the countermeasures of location privacy preserving spectrum query process, both SU and database aim to maximize the location privacy with constraints of spectrum utility. Thus, they can obtain higher location privacy level with sacrifice of spectrum utility as long as the spectrum utility meets the requirements. We evaluate the unified attack and defence approaches based on simulation and demonstrate the effectiveness of the proposed location privacy preserving approaches.Date of Conference: 8-12 June 2015Conference Location: Londo

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side

    Providing efficient services for smartphone applications

    Get PDF
    Mobile applications are becoming an indispensable part of people\u27s lives, as they allow access to a broad range of services when users are on the go. We present our efforts towards enabling efficient mobile applications in smartphones. Our goal is to improve efficiency of the underlying services, which provide essential functionality to smartphone applications. In particular, we are interested in three fundamental services in smartphones: wireless communication service, power management service, and location reporting service.;For the wireless communication service, we focus on improving spectrum utilization efficiency for cognitive radio communications. We propose ETCH, a set of channel hopping based MAC layer protocols for communication rendezvous in cognitive radio communications. ETCH can fully utilize spectrum diversity in communication rendezvous by allowing all the rendezvous channels to be utilized at the same time.;For the power management service, we improve its efficiency from three different angles. The first angle is to reduce energy consumption of WiFi communications. We propose HoWiES, a system-for WiFi energy saving by utilizing low-power ZigBee radio. The second angle is to reduce energy consumption of web based smartphone applications. We propose CacheKeeper, which is a system-wide web caching service to eliminate unnecessary energy consumption caused by imperfect web caching in many smartphone applications. The third angle is from the perspective of smartphone CPUs. We found that existing CPU power models are ill-suited for modern multicore smartphone CPUs. We present a new approach of CPU power modeling for smartphones. This approach takes CPU idle power states into consideration, and can significantly improve power estimation accuracy and stability for multicore smartphones.;For the location reporting service, we aim to design an efficient location proof solution for mobile location based applications. We propose VProof, a lightweight and privacy-preserving location proof scheme that allows users to construct location proofs by simply extracting unforgeable information from the received packets

    Advanced languages and techniques for trust negotiation.

    Get PDF
    The Web is quickly shifting from a document browsing and delivery system to a hugely complex ecosystem of interconnected online applications. A relevant portion of these applications dramatically increase the number of users required to dynamically authenticate themselves and to, on the other hand, to identify the service they want to use. In order to manage interactions among such users/services is required a flexible but powerful mechanism. Trust management, and in particular trust negotiation techniques, is a reasonable solution. In this work we present the formalization of the well known trust negotiation framework Trust-X, of a rule-based policy definition language, called X-RNL. Moreover, we present the extension of both the framework and of the language to provide advanced trust negotiation architectures, namely negotiations among groups. We also provide protocols to adapt trust negotiations to mobile environments, specifically, we present protocols allowing a trust negotiation to be executed among several, distinct, sessions while still preserving its security properties. Such protocols have also been extended to provides the capability to migrate a ongoing trust negotiation among a set of known, reliable, subjects. Finally, we present the application of the previously introduced trust negotiation techniques into real world scenarios: online social networks, critical infrastructures and cognitive radio networks

    Wireless communication, sensing, and REM: A security perspective

    Get PDF
    The diverse requirements of next-generation communication systems necessitate awareness, flexibility, and intelligence as essential building blocks of future wireless networks. The awareness can be obtained from the radio signals in the environment using wireless sensing and radio environment mapping (REM) methods. This is, however, accompanied by threats such as eavesdropping, manipulation, and disruption posed by malicious attackers. To this end, this work analyzes the wireless sensing and radio environment awareness mechanisms, highlighting their vulnerabilities and provides solutions for mitigating them. As an example, the different threats to REM and its consequences in a vehicular communication scenario are described. Furthermore, the use of REM for securing communications is discussed and future directions regarding sensing/REM security are highlighted

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’
    • …
    corecore