2,028 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Scheduling a multi class queue with many exponential servers: asymptotic optimality in heavy traffic

    Full text link
    We consider the problem of scheduling a queueing system in which many statistically identical servers cater to several classes of impatient customers. Service times and impatience clocks are exponential while arrival processes are renewal. Our cost is an expected cumulative discounted function, linear or nonlinear, of appropriately normalized performance measures. As a special case, the cost per unit time can be a function of the number of customers waiting to be served in each class, the number actually being served, the abandonment rate, the delay experienced by customers, the number of idling servers, as well as certain combinations thereof. We study the system in an asymptotic heavy-traffic regime where the number of servers n and the offered load r are simultaneously scaled up and carefully balanced: n\approx r+\beta \sqrtr for some scalar \beta. This yields an operation that enjoys the benefits of both heavy traffic (high server utilization) and light traffic (high service levels.

    Analysis of Petri Net Models through Stochastic Differential Equations

    Full text link
    It is well known, mainly because of the work of Kurtz, that density dependent Markov chains can be approximated by sets of ordinary differential equations (ODEs) when their indexing parameter grows very large. This approximation cannot capture the stochastic nature of the process and, consequently, it can provide an erroneous view of the behavior of the Markov chain if the indexing parameter is not sufficiently high. Important phenomena that cannot be revealed include non-negligible variance and bi-modal population distributions. A less-known approximation proposed by Kurtz applies stochastic differential equations (SDEs) and provides information about the stochastic nature of the process. In this paper we apply and extend this diffusion approximation to study stochastic Petri nets. We identify a class of nets whose underlying stochastic process is a density dependent Markov chain whose indexing parameter is a multiplicative constant which identifies the population level expressed by the initial marking and we provide means to automatically construct the associated set of SDEs. Since the diffusion approximation of Kurtz considers the process only up to the time when it first exits an open interval, we extend the approximation by a machinery that mimics the behavior of the Markov chain at the boundary and allows thus to apply the approach to a wider set of problems. The resulting process is of the jump-diffusion type. We illustrate by examples that the jump-diffusion approximation which extends to bounded domains can be much more informative than that based on ODEs as it can provide accurate quantity distributions even when they are multi-modal and even for relatively small population levels. Moreover, we show that the method is faster than simulating the original Markov chain

    Heavy-tailed Distributions In Stochastic Dynamical Models

    Full text link
    Heavy-tailed distributions are found throughout many naturally occurring phenomena. We have reviewed the models of stochastic dynamics that lead to heavy-tailed distributions (and power law distributions, in particular) including the multiplicative noise models, the models subjected to the Degree-Mass-Action principle (the generalized preferential attachment principle), the intermittent behavior occurring in complex physical systems near a bifurcation point, queuing systems, and the models of Self-organized criticality. Heavy-tailed distributions appear in them as the emergent phenomena sensitive for coupling rules essential for the entire dynamics

    Steady-state analysis of shortest expected delay routing

    Get PDF
    We consider a queueing system consisting of two non-identical exponential servers, where each server has its own dedicated queue and serves the customers in that queue FCFS. Customers arrive according to a Poisson process and join the queue promising the shortest expected delay, which is a natural and near-optimal policy for systems with non-identical servers. This system can be modeled as an inhomogeneous random walk in the quadrant. By stretching the boundaries of the compensation approach we prove that the equilibrium distribution of this random walk can be expressed as a series of product-forms that can be determined recursively. The resulting series expression is directly amenable for numerical calculations and it also provides insight in the asymptotic behavior of the equilibrium probabilities as one of the state coordinates tends to infinity.Comment: 41 pages, 13 figure

    Stochastic Processes with Applications

    Get PDF
    Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines.This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included

    Scheduling control for queueing systems with many servers: asymptotic optimality in heavy traffic

    Full text link
    A multiclass queueing system is considered, with heterogeneous service stations, each consisting of many servers with identical capabilities. An optimal control problem is formulated, where the control corresponds to scheduling and routing, and the cost is a cumulative discounted functional of the system's state. We examine two versions of the problem: ``nonpreemptive,'' where service is uninterruptible, and ``preemptive,'' where service to a customer can be interrupted and then resumed, possibly at a different station. We study the problem in the asymptotic heavy traffic regime proposed by Halfin and Whitt, in which the arrival rates and the number of servers at each station grow without bound. The two versions of the problem are not, in general, asymptotically equivalent in this regime, with the preemptive version showing an asymptotic behavior that is, in a sense, much simpler. Under appropriate assumptions on the structure of the system we show: (i) The value function for the preemptive problem converges to VV, the value of a related diffusion control problem. (ii) The two versions of the problem are asymptotically equivalent, and in particular nonpreemptive policies can be constructed that asymptotically achieve the value VV. The construction of these policies is based on a Hamilton--Jacobi--Bellman equation associated with VV.Comment: Published at http://dx.doi.org/10.1214/105051605000000601 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore