5,671 research outputs found

    GrLS : group-based location service in mobile ad hoc networks

    Get PDF
    2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    Blackboard Rules for Coordinating Context-aware Applications in Mobile Ad Hoc Networks

    Get PDF
    Thanks to improvements in wireless communication technologies and increasing computing power in hand-held devices, mobile ad hoc networks are becoming an ever-more present reality. Coordination languages are expected to become important means in supporting this type of interaction. To this extent we argue the interest of the Bach coordination language as a middleware that can handle and react to context changes as well as cope with unpredictable physical interruptions that occur in opportunistic network connections. More concretely, our proposal is based on blackboard rules that model declaratively the actions to be taken once the blackboard content reaches a predefined state, but also that manage the engagement and disengagement of hosts and transient sharing of blackboards. The idea of reactiveness has already been introduced in previous work, but as will be appreciated by the reader, this article presents a new perspective, more focused on a declarative setting.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Mobile Ad-Hoc Networks

    Get PDF
    Ad-hoc networks are a key in the evolution of wireless networks. Ad-hoc networks are typically composed of equal nodes, which communicate over wireless links without any central control. Ad-hoc wireless networks inherit the traditional problems of wireless and mobile communications, such as bandwidth optimisation, power control and transmission quality enhancement. In addition, the multi-hop nature and the lack of fixed infrastructure brings new research problems such as configuration advertising, discovery and maintenance, as well as ad-hoc addressing and self-routing. Many different approaches and protocols have been proposed and there are even multiple standardization efforts within the Internet Engineering Task Force, as well as academic and industrial projects. This chapter focuses on the state of the art in mobile ad-hoc networks. It highlights some of the emerging technologies, protocols, and approaches (at different layers) for realizing network services for users on the move in areas with possibly no pre-existing communications infrastructure
    corecore