251 research outputs found

    Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Get PDF
    A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Portable Multi-Peripheral Telemedicine Kits to Expand Clinical Services of Relief Organizations in Contexts Of Disaster

    Get PDF
    Objectives: This study explored the practical aspects of multi-peripheral portable telemedicine kits that make them specifically ideal for expanding and improving the medical services provided by disaster relief organisations. It also attempted to compile a list of proposed criteria and components of a standard disaster portable telemedicine kit. Methodology: Descriptive study extracting data by review of published research articles and manufacturer documentations, and reports of some humanitarian organisations.Results: The study revealed that portable telemedicine kits help delivering timely, high-quality, and safe general and specialty medical service in disaster situations. Moreover they increase the capacity to serve greater numbers of affected people. A list of criteria was compiled from reviewed data to suggest a standard disaster portable telemedicine kit. Conclusion: Portable telemedicine kits expand the capacity of the delivered healthcare service of a relief organisation qualitatively and quantitatively. Portable telemedicine kits with disaster- specific criteria are recommended for relief organisations

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Integration of multimetric path management into 802.11S for telemedicine quality of service provision

    Get PDF
    The merits of 802.11s as the wireless mesh network standard provide a low cost and high independent scalability telemedicine infrastructure. However, challenges in degradation of performance as hops increase and the absence of Quality of Service (QoS) provision need to be resolved. Reliability and timely manner are important factors for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based on telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme. This modification and resource allocation improvement of 802.11s were given the designation medQoS-802.11s. MedQoS- 802.11s could provide a link guarantee of telemedicine traffic transmission in the selected path. MedQoS-802.11s had been tested using ns3 simulation and real environment testbed. The result has shown that medQoS-802.11s could achieve the traffic guarantee for almost 95% telemedicine traffic with 58% for the resource intensive diagnostic video traffic. It has also shown that the cost of link path overhead is efficient with the transmission overhead having an increment of 6% compared to the original 802.11s. The concurrent connection results for single time transmission shows that medQoS-802.11s has a significant increase of up to 12% traffic than original 802.11s. The testbed results have verified the QoS guarantee of the intended telemedicine traffic per transmission time. In summary, the reliability and time guarantee of medQoS has highly improved 802.11s to transmit telemedicine traffic

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine
    corecore