36 research outputs found

    SKIRT: hybrid parallelization of radiative transfer simulations

    Full text link
    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modeling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behavior of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.Comment: 21 pages, 20 figure

    Slicer

    Get PDF
    Explorative data visualization is a widespread tool for gaining insights from datasets. Investigating data in linked visualizations lets users explore potential relationships in their data at will. Furthermore, this type of analysis does not require any technical knowledge, widening the userbase from developers to anyone. Implementing explorative data visualizations in web browsers makes data analysis accessible to anyone with a PC. In addition to accessibility, the available types of visualizations and their interactive latency are essential for the utility of data exploration. Available visualizations limit the number of datasets eligible for use in the application, and latency limits how much exploring the users are willing to do. Existing solutions often do all the computation involved in either the client application or on a backend server. However, using the client limits performance and data size since hardware resources in web browsers are scarce, and sending large datasets over a network is not feasible. Whereas server-based computation often comes with high requirements for server hardware and is limited by network latency and bandwidth on each interaction. This thesis presents Slicer, a framework for creating explorative data visualizations in web browsers. Applications can be created with minimal developer effort, requiring only a description of the visualizations. Slicer implements bar charts and choropleth maps. The visualizations are linked and can be filtered either by brushing or clicking on single targets. To overcome the hurdles of pure client- and server-reliant solutions, Slicer uses a hybrid approach, where prioritized interactions are handled client-side. Recognizing that different types of interactions have different latency thresholds, we trade the cost of switching views for low latency on filtering. To achieve real-time filtering performance, we follow the principle that the chosen resolution of the visualizations, not data size, should limit interactive scalability. We describe use of data tiles accommodating more interactions than shown in earlier work, using an approach based on delta differencing, which ensures constant time complexity when filtering. For computing data tiles, we present techniques for efficient computation on consumer hardware. Our results show that Slicer can offer real-time interactivity on latency-sensitive interactions regardless of data size, averaging above 150Hz on a consumer laptop. For less sensitive interactions, acceptable latency is shown for datasets with tens of millions of records, depending on the resolution of the visualizations

    Earth Observation Open Science and Innovation

    Get PDF
    geospatial analytics; social observatory; big earth data; open data; citizen science; open innovation; earth system science; crowdsourced geospatial data; citizen science; science in society; data scienc

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Adaptive P2P platform for data sharing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches
    corecore