1,174 research outputs found

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    Interactive analysis of time intervals in a two-dimensional space

    Get PDF
    Time intervals are conventionally represented as linear segments in a one-dimensional space. An alternative representation of time intervals is the triangular model (TM), which represents time intervals as points in a two-dimensional space. In this paper, the use of TM in visualising and analysing time intervals is investigated. Not only does this model offer a compact visualisation of the distribution of intervals, it also supports an innovative temporal query mechanism that relies on geometries in the two-dimensional space. This query mechanism has the potential to simplify queries that are difficult to specify using traditional linear temporal query devices. Moreover, a software prototype that implements TM in a geographical information system (GIS) is introduced. This prototype has been applied in a real scenario to analyse time intervals that were detected by a Bluetooth tracking system. This application shows that TM has the potential to support a traditional GIS to analyse interval-based geographical data

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    The Aalborg Survey / Part 4 - Literature Study:Diverse Urban Spaces (DUS)

    Get PDF

    Grand Challenges in Immersive Analytics

    Get PDF
    The definitive version will be published in CHI 2021, May 8–13, 2021, Yokohama, JapanInternational audienceImmersive Analytics is a quickly evolving field that unites several areas such as visualisation, immersive environments, and humancomputer interaction to support human data analysis with emerging technologies. This research has thrived over the past years with multiple workshops, seminars, and a growing body of publications, spanning several conferences. Given the rapid advancement of interaction technologies and novel application domains, this paper aims toward a broader research agenda to enable widespread adoption. We present 17 key research challenges developed over multiple sessions by a diverse group of 24 international experts, initiated from a virtual scientific workshop at ACM CHI 2020. These challenges aim to coordinate future work by providing a systematic roadmap of current directions and impending hurdles to facilitate productive and effective applications for Immersive Analytics

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Sensing and Visualizing Social Context from Spatial Proximity

    Get PDF
    The concept of pervasive computing, as introduced by Marc Weiser under the name ubiquitous computing in the early 90s, spurred research into various kinds of context-aware systems and applications. There is a wide range of contextual parameters, including location, time, temperature, devices and people in proximity, which have been part of the initial ideas about context-aware computing. While locational context is already a well understood concept, social context---based on the people around us---proves to be harder to grasp and to operationalize. This work continues the line of research into social context, which is based on the proximity and meeting patterns of people in the physical space. It takes this research out of the lab and out of well controlled situations into our urban environments, which are full of ambiguity and opportunities. The key to this research is the tool that caused dramatic change in individual and collective behavior during the last 20 years and which is a manifestation of many of the ideas of the pervasive computing paradigm: the mobile phone. In this work, the mobile is regarded as a proxy for people. Through it, the social environment becomes accessible to digital measurement and processing. To understand the large amount of data that now becomes available to automatic measurement, we will turn to the discipline of social network analysis. It provides powerful methods, that are able to condense data and extract relevant meaning. Visualization helps to understand and interpret the results. This thesis contains a number of experiments, that demonstrate how the automatic measurement of social proximity data through Bluetooth can be used to measure variables of personal behavior, group behavior and the behavior of groups in relation to places. The principal contributions are: * A methodology to visualize personal social context by using an ego proximity network. Specific episodes can be localized and compared. * method to compare different days in terms of social context, e.g. to support automatic diary applications. * A method to compose social geographic maps. Locations of similar social context are detected and combined. * Functions to measure short-term changes in social activity, based on the distinction between strange and familiar devices. * The characterization of Bluetooth inquiries for social proximity sensing. * A dataset of Bluetooth sightings from an ego perspective in seven different settings. Additionally, some settings feature multiple stationary scanners and Cell-ID measurements. * Soft- and hardware to capture, collect, store and analyze Bluetooth proximity data

    Wi-Fi fingerprinting based on collaborative confidence level training

    Get PDF
    Wi-Fi fingerprinting has been a popular indoor positioning technique with the advantage that infrastructures are readily available in most urban areas. However wireless signals are prone to fluctuation and noise, introducing errors in the final positioning result. This paper proposes a new fingerprint training method where a number of users train collaboratively and a confidence factor is generated for each fingerprint. Fingerprinting is carried out where potential fingerprints are extracted based on the confidence factor. Positioning accuracy improves by 40% when the new fingerprinting method is implemented and maximum error is reduced by 35%
    • 

    corecore