84,723 research outputs found

    Query Processing In Location-based Services

    Get PDF
    With the advances in wireless communication technology and advanced positioning systems, a variety of Location-Based Services (LBS) become available to the public. Mobile users can issue location-based queries to probe their surrounding environments. One important type of query in LBS is moving monitoring queries over mobile objects. Due to the high frequency in location updates and the expensive cost of continuous query processing, server computation capacity and wireless communication bandwidth are the two limiting factors for large-scale deployment of moving object database systems. To address both of the scalability factors, distributed computing has been considered. These schemes enable moving objects to participate as a peer in query processing to substantially reduce the demand on server computation, and wireless communications associated with location updates. In the first part of this dissertation, we propose a distributed framework to process moving monitoring queries over moving objects in a spatial network environment. In the second part of this dissertation, in order to reduce the communication cost, we leverage both on-demand data access and periodic broadcast to design a new hybrid distributed solution for moving monitoring queries in an open space environment. Location-based services make our daily life more convenient. However, to receive the services, one has to reveal his/her location and query information when issuing locationbased queries. This could lead to privacy breach if these personal information are possessed by some untrusted parties. In the third part of this dissertation, we introduce a new privacy protection measure called query l-diversity, and provide two cloaking algorithms to achieve both location kanonymity and query l-diversity to better protect user privacy. In the fourth part of this dissertation, we design a hybrid three-tier architecture to help reduce privacy exposure. In the fifth part of this dissertation, we propose to use Road Network Embedding technique to process privacy protected queries

    Benefits of Location-Based Access Control:A Literature Study

    Get PDF
    Location-based access control (LBAC) has been suggested as a means to improve IT security. By 'grounding' users and systems to a particular location, \ud attackers supposedly have more difficulty in compromising a system. However, the motivation behind LBAC and its potential benefits have not been investigated thoroughly. To this end, we perform a structured literature review, and examine the goals that LBAC can potentially fulfill, \ud the specific LBAC systems that realize these goals and the context on which LBAC depends. Our paper has four main contributions:\ud first we propose a theoretical framework for LBAC evaluation, based on goals, systems and context. Second, we formulate and apply criteria for evaluating the usefulness of an LBAC system. Third, we identify four usage scenarios for LBAC: open areas and systems, hospitals, enterprises, and finally data centers and military facilities. Fourth, we propose directions for future research:\ud (i) assessing the tradeoffs between location-based, physical and logical access control, (ii) improving the transparency of LBAC decision making, and \ud (iii) formulating design criteria for facilities and working environments for optimal LBAC usage

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    corecore