779 research outputs found

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification

    Route Restoration Method for Sparse Taxi GPS trajectory based on Bayesian Network

    Get PDF
    In order to improve the availability of taxi GPS big data, we restore the chosen route for the sparse taxi GPS trajectory in this work. A trajectory restoration method based on Bayesian network is proposed. Compared with the traditional research solely based on time-spatial variables, this method additionally considers the characteristics of empty/heavy taxi status, weather conditions, drivers, vehicle running and other factors to carry out route restoration. A field case of grid network in Ningbo is taken to verify the applicability of the method, using the taxi GPS trajectory data from Ningbo Taxi Information Management Platform. The case results show that the accuracy of Bayesian network method based on multiple factors reaches 91.4%. Its performance is superior to the Multivariate logistic regression model. In addition, the proposed method is especially suitable for scenarios with a high missing rate of track data, such as a scene with timespan of about 5 min between neighbour trajectories

    Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools

    Full text link
    Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies

    Predicting Transportation Carbon Emission with Urban Big Data

    Get PDF
    Transportation carbon emission is a significant contributor to the increase of greenhouse gases, which directly threatens the change of climate and human health. Under the pressure of the environment, it is very important to master the information of transportation carbon emission in real time. In the traditional way, we get the information of the transportation carbon emission by calculating the combustion of fossil fuel in the transportation sector. However, it is very difficult to obtain the real-time and accurate fossil fuel combustion in the transportation field. In this paper, we predict the real-time and fine-grained transportation carbon emission information in the whole city, based on the spatio-temporal datasets we observed in the city, that is taxi GPS data, transportation carbon emission data, road networks, points of interests (POIs), and meteorological data. We propose a three-layer perceptron neural network (3-layerPNN) to learn the characteristics of collected data and infer the transportation carbon emission. We evaluate our method with extensive experiments based on five real data sources obtained in Zhuhai, China. The results show that our method has advantages over the well-known three machine learning methods (Gaussian Naive Bayes, Linear Regression, and Logistic Regression) and two deep learning methods (Stacked Denoising Autoencoder and Deep Belief Networks)
    corecore