1,367 research outputs found

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    Bounds and extremal graphs for total dominating identifying codes

    Full text link
    An identifying code CC of a graph GG is a dominating set of GG such that any two distinct vertices of GG have distinct closed neighbourhoods within CC. The smallest size of an identifying code of GG is denoted γID(G)\gamma^{\text{ID}}(G). When every vertex of GG also has a neighbour in CC, it is said to be a total dominating identifying code of GG, and the smallest size of a total dominating identifying code of GG is denoted by γtID(G)\gamma_t^{\text{ID}}(G). Extending similar characterizations for identifying codes from the literature, we characterize those graphs GG of order nn with γtID(G)=n\gamma_t^{\text{ID}}(G)=n (the only such connected graph is P3P_3) and γtID(G)=n−1\gamma_t^{\text{ID}}(G)=n-1 (such graphs either satisfy γID(G)=n−1\gamma^{\text{ID}}(G)=n-1 or are built from certain such graphs by adding a set of universal vertices, to each of which a private leaf is attached). Then, using bounds from the literature, we remark that any (open and closed) twin-free tree of order nn has a total dominating identifying code of size at most 3n4\frac{3n}{4}. This bound is tight, and we characterize the trees reaching it. Moreover, by a new proof, we show that this bound actually holds for the larger class of all twin-free graphs of girth at least 5. The cycle C8C_8 also attains this bound. We also provide a generalized bound for all graphs of girth at least 5 (possibly with twins). Finally, we relate γtID(G)\gamma_t^{\text{ID}}(G) to the related parameter γID(G)\gamma^{\text{ID}}(G) as well as the location-domination number of GG and its variants, providing bounds that are either tight or almost tight

    Sufficient conditions for a digraph to admit a (1,=l)-identifying code

    Get PDF
    A (1, = `)-identifying code in a digraph D is a subset C of vertices of D such that all distinct subsets of vertices of cardinality at most ` have distinct closed in-neighbourhoods within C. In this paper, we give some sufficient conditions for a digraph of minimum in-degree d - = 1 to admit a (1, = `)- identifying code for ` ¿ {d -, d- + 1}. As a corollary, we obtain the result by Laihonen that states that a graph of minimum degree d = 2 and girth at least 7 admits a (1, = d)-identifying code. Moreover, we prove that every 1-in-regular digraph has a (1, = 2)-identifying code if and only if the girth of the digraph is at least 5. We also characterize all the 2-in-regular digraphs admitting a (1, = `)-identifying code for ` ¿ {2, 3}.Peer ReviewedPostprint (author's final draft

    Locally identifying coloring in bounded expansion classes of graphs

    Get PDF
    A proper vertex coloring of a graph is said to be locally identifying if the sets of colors in the closed neighborhood of any two adjacent non-twin vertices are distinct. The lid-chromatic number of a graph is the minimum number of colors used by a locally identifying vertex-coloring. In this paper, we prove that for any graph class of bounded expansion, the lid-chromatic number is bounded. Classes of bounded expansion include minor closed classes of graphs. For these latter classes, we give an alternative proof to show that the lid-chromatic number is bounded. This leads to an explicit upper bound for the lid-chromatic number of planar graphs. This answers in a positive way a question of Esperet et al [L. Esperet, S. Gravier, M. Montassier, P. Ochem and A. Parreau. Locally identifying coloring of graphs. Electronic Journal of Combinatorics, 19(2), 2012.]
    • …
    corecore