155 research outputs found

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Locating-dominating sets and identifying codes in Graphs of Girth at least 5

    Get PDF
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meeting these bounds.Award-winningPostprint (author’s final draft

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset CV(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size nnΔ1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree δ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about logddn\tfrac{\log d}{d}n

    Sufficient conditions for a digraph to admit a (1,=l)-identifying code

    Get PDF
    A (1, = `)-identifying code in a digraph D is a subset C of vertices of D such that all distinct subsets of vertices of cardinality at most ` have distinct closed in-neighbourhoods within C. In this paper, we give some sufficient conditions for a digraph of minimum in-degree d - = 1 to admit a (1, = `)- identifying code for ` ¿ {d -, d- + 1}. As a corollary, we obtain the result by Laihonen that states that a graph of minimum degree d = 2 and girth at least 7 admits a (1, = d)-identifying code. Moreover, we prove that every 1-in-regular digraph has a (1, = 2)-identifying code if and only if the girth of the digraph is at least 5. We also characterize all the 2-in-regular digraphs admitting a (1, = `)-identifying code for ` ¿ {2, 3}.Peer ReviewedPostprint (author's final draft

    Bounds and extremal graphs for total dominating identifying codes

    Full text link
    An identifying code CC of a graph GG is a dominating set of GG such that any two distinct vertices of GG have distinct closed neighbourhoods within CC. The smallest size of an identifying code of GG is denoted γID(G)\gamma^{\text{ID}}(G). When every vertex of GG also has a neighbour in CC, it is said to be a total dominating identifying code of GG, and the smallest size of a total dominating identifying code of GG is denoted by γtID(G)\gamma_t^{\text{ID}}(G). Extending similar characterizations for identifying codes from the literature, we characterize those graphs GG of order nn with γtID(G)=n\gamma_t^{\text{ID}}(G)=n (the only such connected graph is P3P_3) and γtID(G)=n1\gamma_t^{\text{ID}}(G)=n-1 (such graphs either satisfy γID(G)=n1\gamma^{\text{ID}}(G)=n-1 or are built from certain such graphs by adding a set of universal vertices, to each of which a private leaf is attached). Then, using bounds from the literature, we remark that any (open and closed) twin-free tree of order nn has a total dominating identifying code of size at most 3n4\frac{3n}{4}. This bound is tight, and we characterize the trees reaching it. Moreover, by a new proof, we show that this bound actually holds for the larger class of all twin-free graphs of girth at least 5. The cycle C8C_8 also attains this bound. We also provide a generalized bound for all graphs of girth at least 5 (possibly with twins). Finally, we relate γtID(G)\gamma_t^{\text{ID}}(G) to the related parameter γID(G)\gamma^{\text{ID}}(G) as well as the location-domination number of GG and its variants, providing bounds that are either tight or almost tight

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft
    corecore