28,823 research outputs found

    Incorporating waiting time in competitive location models: Formulations and heuristics

    Get PDF
    In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times.Market capture, queuing, ant colony optimization

    Screening interacting factors in a wireless network testbed using locating arrays

    Get PDF
    Wireless systems exhibit a wide range of configurable parameters (factors), each with a number of values (levels), that may influence performance. Exhaustively analyzing all factor interactions is typically not feasible in experimental systems due to the large design space. We propose a method for determining which factors play a significant role in wireless network performance with multiple performance metrics (response variables). Such screening can be used to reduce the set of factors in subsequent experimental testing, whether for modelling or optimization. Our method accounts for pairwise interactions between the factors when deciding significance, because interactions play a significant role in real-world systems. We utilize locating arrays to design the experiment because they guarantee that each pairwise interaction impacts a distinct set of tests. We formulate the analysis as a problem in compressive sensing that we solve using a variation of orthogonal matching pursuit, together with statistical methods to determine which factors are significant. We evaluate the method using data collected from the w-iLab.t Zwijnaarde wireless network testbed and construct a new experiment based on the first analysis to validate the results. We find that the analysis exhibits robustness to noise and to missing data

    Location models for airline hubs behaving as M/D/c queues

    Get PDF
    Models are presented for the optimal location of hubs in airline networks, that take into consideration the congestion effects. Hubs, which are the most congested airports, are modeled as M/D/c queuing systems, that is, Poisson arrivals, deterministic service time, and {\em c} servers. A formula is derived for the probability of a number of customers in the system, which is later used to propose a probabilistic constraint. This constraint limits the probability of {\em b} airplanes in queue, to be lesser than a value α\alpha. Due to the computational complexity of the formulation. The model is solved using a meta-heuristic based on tabu search. Computational experience is presented.Hub location, congestion, tabu-search

    Studying Solutions of the p-Median Problem for the Location of Public Bike Stations

    Get PDF
    The use of bicycles as a means of transport is becoming more and more popular today, especially in urban areas, to avoid the disadvantages of individual car traffic. In fact, city managers react to this trend and actively promote the use of bicycles by providing a network of bicycles for public use and stations where they can be stored. Establishing such a network involves the task of finding best locations for stations, which is, however, not a trivial task. In this work, we examine models to determine the best location of bike stations so that citizens will travel the shortest distance possible to one of them. Based on real data from the city of Malaga, we formulate our problem as a p-median problem and solve it with a variable neighborhood search algorithm that was automatically configured with irace. We compare the locations proposed by the algorithm with the real ones used currently by the city council. We also study where new locations should be placed if the network grows.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. This research was partially funded by the University of MĂĄlaga, Andalucı́a Tech, the Spanish MINECO and FEDER projects: TIN2014- 57341-R, TIN2016-81766-REDT, and TIN2017-88213-R. C. Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO

    Hierarchical location-allocation models for congested systems

    Get PDF
    In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and their locations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.Hierarchical location, congestion, queueing
    • 

    corecore