6,958 research outputs found

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Reverse Engineering of Short Circuit Analyses

    Get PDF
    The electrical distribution system has evolved with embedded computer systems that can better manage the electrical fault that occurred around the feeders. Such random events can affect the reliability indices of overall systems. Computerized management system for distribution operation has been improving with the advanced sensing technologies. The general research question is here to articulate is the responsiveness for utility crew to pinpoint the exact location of a fault based on the SCADA fault indicators from pole-mounted feeder remote terminal units (FRTUs). This has been a tricky question because it relies on the information received from the sensors that can conclude fault with logic\u27s of over currents. The merit of this work can benefit at large the grid reliability because of time-saving in searching the exact location of a fault. The main contribution of this thesis is to utilize the 3-phase unbalanced power flow method to incrementally search for narrowing the localization of electrical short circuits. This is known as the reversal of the typical short circuit approach where a location of the fault is presumed. The 3 topological configurations of simulation studied in this thesis exhibit the typical radial configuration of a distribution feeder have been researched based on unidirectional and bidirectional power flow simulation. The exact fault location is carried in two steps. Firstly, a bisection search algorithm has been employed. Secondly, an incremental adjustment to match the simulated currents of fault with the measurements is conducted. Finally, the sensitivity analysis of a search can be improved with the proposed algorithm that leads to matching of telemetered and calculated values. The analysis of exact fault location is carried in unidirectional and bidirectional flow of power. Distributed energy resources (DER) such as residential PV at a household level as well the wind energy changes affect the protective relaying within a feeder as well as the reconfigurability of the switching sequences. Furthermost, the bidirectionality of power flow in an unbalanced manner would also be a challenging issue to deal with the power quality in automation. Finally, the simulation results based on unidirectional and bidirectional power flow are extensively discussed along with the future scope

    Comparisons of MVAC and MVDC systems in dynamic operation, fault protection and post-fault restoration

    Get PDF
    One of the most significant obstacles preventing the large-scale application of direct-current (DC) technology in medium voltage (MV) distribution networks is their fault protection. The existing AC relay protection needs to be changed or redesigned to protect the future overlay MVAC and MVDC distribution networks. Therefore, a comprehensive understanding of the dynamic and fault behavior and post-fault restoration strategies of MVAC and MVDC systems are critically important. Moreover, a comparison of MVAC and MVDC systems during a fault will also contribute to designing the protection systems of hybrid MV AC/DC systems. In this paper, the challenges of protecting DC faults of MVDC systems and possible solutions are first introduced. Then, the fault characteristics and post-fault restoration of MVDC and MVAC distribution systems are compared and investigated through case studies. Time-domain simulations have been conducted in PSCAD/EMTDC. The work in this paper will be valuable for the protection design for future hybrid MV AC/DC systems

    Doctor of Philosophy

    Get PDF
    dissertationThree major catastrophic failures in photovoltaic (PV) arrays are ground-faults, line-to-line faults, and arc faults. Although the number of such failures is few, recent fire events on April 5, 2009, in Bakersfield, California, and April 16, 2011, in Mount Holly, North Carolina suggest the need for improvements in present fault detection and mitigation techniques, as well as amendments to existing codes and standards to avoid such accidents. A fault prediction and detection technique for PV arrays based on spread spectrum time domain reflectometry (SSTDR) has been proposed and was successfully implemented. Unlike other conventional techniques, SSTDR does not depend on the amplitude of the fault-current. Therefore, SSTDR can be used in the absence of solar irradiation as well. However, wide variation in impedance throughout different materials and interconnections makes fault locating more challenging than prediction/detection of faults. Another application of SSTDR in PV systems is the measurement of characteristic impedance of power components for condition monitoring purposes. Any characteristic variations in one component will simultaneously alter the operating conditions of other components in a closed-loop system, resulting in a shift in overall reliability profile. This interdependence makes the reliability of a converter a complex function of time and operating conditions. Details of this failure mode, mechanism, and effect analysis (FMMEA) have been developed. By knowing the present state of health and the remaining useful life (RUL) of a power converter, it is possible to reduce the maintenance cost for expensive high-power converters by facilitating a reliability centered maintenance (RCM) scheme. This research is a step forward toward power converter reliability analysis since the cumulative effect of multiple degraded components has been considered here for the first time in order to estimate reliability of a power converter

    A comparison framework for distribution system outage and fault location methods

    Get PDF
    Finding the location of faults in distribution networks has been a long standing problem for utility operators, and an interesting subject for researchers as well. In recent years, significant research efforts have been devoted to the development of methods for identification of the faulted area to assist utility operators in expediting service restoration, and consequently reducing outage time and relevant costs. Considering today's wide variety of distribution systems, a solution preferred for a specific system might be impractical for another one. This paper provides a comparison framework which classifies and reviews a relatively large number of different fault location and outage area location methods to serve as a guide to power system engineers and researchers to choose the best option based on their existing system and requirements. It also supports investigations on the challenging and unsolved problems to realize the fields of future studies and improvements. For each class of methods, a short description of the main idea and methodology is presented. Then, all the methods are discussed in detail presenting the key points, advantages, limitations, and requirements

    Protection and fault location schemes suited to large-scale multi-vendor high voltage direct current grids

    Get PDF
    Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems.Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems
    • …
    corecore