17 research outputs found

    Geometric Pursuit Evasion

    Get PDF
    In this dissertation we investigate pursuit evasion problems set in geometric environments. These games model a variety of adversarial situations in which a team of agents, called pursuers, attempts to catch a rogue agent, called the evader. In particular, we consider the following problem: how many pursuers, each with the same maximum speed as the evader, are needed to guarantee a successful capture? Our primary focus is to provide combinatorial bounds on the number of pursuers that are necessary and sufficient to guarantee capture. The first problem we consider consists of an unpredictable evader that is free to move around a polygonal environment of arbitrary complexity. We assume that the pursuers have complete knowledge of the evader's location at all times, possibly obtained through a network of cameras placed in the environment. We show that regardless of the number of vertices and obstacles in the polygonal environment, three pursuers are always sufficient and sometimes necessary to capture the evader. We then consider several extensions of this problem to more complex environments. In particular, suppose the players move on the surface of a 3-dimensional polyhedral body; how many pursuers are required to capture the evader? We show that 4 pursuers always suffice (upper bound), and that 3 are sometimes necessary (lower bound), for any polyhedral surface with genus zero. Generalizing this bound to surfaces of genus g, we prove the sufficiency of (4g + 4) pursuers. Finally, we show that 4 pursuers also suffice under the "weighted region" constraints, where the movement costs through different regions of the (genus zero) surface have (different) multiplicative weights. Next we consider a more general problem with a less restrictive sensing model. The pursuers' sensors are visibility based, only providing the location of the evader if it is in direct line of sight. We begin my making only the minimalist assumption that pursuers and the evader have the same maximum speed. When the environment is a simply-connected (hole-free) polygon of n vertices, we show that Θ(n^1/2 ) pursuers are both necessary and sufficient in the worst-case. When the environment is a polygon with holes, we prove a lower bound of Ω(n^2/3 ) and an upper bound of O(n^5/6 ) pursuers, where n includes the vertices of the hole boundaries. However, we show that with realistic constraints on the polygonal environment these bounds can be drastically improved. Namely, if the players' movement speed is small compared to the features of the environment, we give an algorithm with a worst case upper bound of O(log n) pursuers for simply-connected n-gons and O(√h + log n) for polygons with h holes. The final problem we consider takes a small step toward addressing the fact that location sensing is noisy and imprecise in practice. Suppose a tracking agent wants to follow a moving target in the two-dimensional plane. We investigate what is the tracker's best strategy to follow the target and at what rate does the distance between the tracker and target grow under worst-case localization noise. We adopt a simple but realistic model of relative error in sensing noise: the localization error is proportional to the true distance between the tracker and the target. Under this model we are able to give tight upper and lower bounds for the worst-case tracking performance, both with or without obstacles in the Euclidean plane

    Mobile robotic network deployment for intruder detection and tracking

    Get PDF
    This thesis investigates the problem of intruder detection and tracking using mobile robotic networks. In the first part of the thesis, we consider the problem of seeking an electromagnetic source using a team of robots that measure the local intensity of the emitted signal. We propose a planner for a team of robots based on Particle Swarm Optimization (PSO) which is a population based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this thesis. Our results are also validated on an experimental testbed. In the second part, we present a game theoretic framework for visibility-based target tracking in multi-robot teams. A team of observers (pursuers) and a team of targets (evaders) are present in an environment with obstacles. The objective of the team of observers is to track the team of targets for the maximum possible time. While the objective of the team of targets is to escape (break line-of-sight) in the minimum time. We decompose the problem into two layers. At the upper level, each pursuer is allocated to an evader through a minimum cost allocation strategy based on the risk of each evader, thereby, decomposing the agents into multiple single pursuer-single evader pairs. Two decentralized allocation strategies are proposed and implemented in this thesis. At the lower level, each pursuer computes its strategy based on the results of the single pursuer-single evader target-tracking problem. We initially address this problem in an environment containing a semi-infinite obstacle with one corner. The pursuer\u27s optimal tracking strategy is obtained regardless of the evader\u27s strategy using techniques from optimal control theory and differential games. Next, we extend the result to an environment containing multiple polygonal obstacles. We construct a pursuit field to provide a guiding vector for the pursuer which is a weighted sum of several component vectors. The performance of different combinations of component vectors is investigated. Finally, we extend our work to address the case when the obstacles are not polygonal, and the observers have constraints in motion

    Contributions To Pursuit-Evasion Game Theory.

    Full text link
    This dissertation studies adversarial conflicts among a group of agents moving in the plane, possibly among obstacles, where some agents are pursuers and others are evaders. The goal of the pursuers is to capture the evaders, where capture requires a pursuer to be either co-located with an evader, or in close proximity. The goal of the evaders is to avoid capture. These scenarios, where different groups compete to accomplish conflicting goals, are referred to as pursuit-evasion games, and the agents are called players. Games featuring one pursuer and one evader are analyzed using dominance, where a point in the plane is said to be dominated by a player if that player is able to reach the point before the opposing players, regardless of the opposing players' actions. Two generalizations of the Apollonius circle are provided. One solves games with environments containing obstacles, and the other provides an alternative solution method for the Homicidal Chauffeur game. Optimal pursuit and evasion strategies based on dominance are provided. One benefit of dominance analysis is that it extends to games with many players. Two foundational games are studied; one features multiple pursuers against a single evader, and the other features a single pursuer against multiple evaders. Both are solved using dominance through a reduction to single pursuer, single evader games. Another game featuring competing teams of pursuers is introduced, where an evader cooperates with friendly pursuers to rendezvous before being captured by adversaries. Next, the assumption of complete and perfect information is relaxed, and uncertainties in player speeds, player positions, obstacle locations, and cost functions are studied. The sensitivity of the dominance boundary to perturbations in parameters is provided, and probabilistic dominance is introduced. The effect of information is studied by comparing solutions of games with perfect information to games with uncertainty. Finally, a pursuit law is developed that requires minimal information and highlights a limitation of dominance regions. These contributions extend pursuit-evasion game theory to a number of games that have not previously been solved, and in some cases, the solutions presented are more amenable to implementation than previous methods.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120650/1/dwoyler_1.pd

    Pursuing an evader through cooperative relaying in multi-agent surveillance networks

    Get PDF
    We provide a distributed control strategy for each mobile agent in a surveillance network in the plane to cooperatively pursue an evader. The pursuit task is relayed from one agent to another when the evader crosses the boundary of the Voronoi regions divided according to the agents’ positions. The dynamics of the resulted cooperative relay-pursuit network are described by a novel model of impulsive systems. As a result, to guarantee the stability of the closed-loop network system, the controllers’ gains are chosen effectively using the solution of an algebraic Riccati equation. The proof of the stability is based on the construction of a switched Lyapunov function. We also show that the proposed controller is able to deal with delays if some sufficient conditions in the form of a set of linear inequalities are satisfied. A numerical example is provided to validate the performance of the proposed controller

    Multi-vehicle Framework for the Development of Robotic Games: the Marco Polo Case

    Get PDF
    This thesis presents a multi-vehicle platform and framework for robotics education and research. The framework has been designed primarily as a tool for teaching children about engineering in general and robotics in particular. The framework is composed of a unique combination of hardware components and software libraries that allow users to easily design and implement sophisticated robotics behaviors. Several example games are presented including ``Obstacle Course," ``Scavenger Hunt," ``Robot Jeopardy," and ``Marco Polo." This thesis also introduces ``Marco Polo" as a robotics problem that mimics the pursuit-evasion game often played by children in swimming pools. Specifically, the question of finding an optimal pursuit strategy under the condition of intermittent communication is addressed. Finally, a problem related to ``Marco Polo" involving a multi-agent sensor network optimally placed in an environment for the purpose of detecting and intercepting intruders is presented together with a proposed solution methodology and simulation and experimental results.School of Electrical & Computer Engineerin
    corecore