148 research outputs found

    The multiple gene duplication problem revisited

    Get PDF
    Motivation: Deciphering the location of gene duplications and multiple gene duplication episodes on the Tree of Life is fundamental to understanding the way gene families and genomes evolve. The multiple gene duplication problem provides a framework for placing gene duplication events onto nodes of a given species tree, and detecting episodes of multiple gene duplication. One version of the multiple gene duplication problem was defined by Guigó et al. in 1996. Several heuristic solutions have since been proposed for this problem, but no exact algorithms were known

    Gene duplicability of core genes is highly consistent across all angiosperms

    Get PDF
    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes

    Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates

    Get PDF
    Gene tree - species tree reconciliation methods have been employed for studying ancient whole genome duplication (WGD) events across the eukaryotic tree of life. Most approaches have relied on using maximum likelihood trees and the maximum parsimony reconciliation thereof to count duplication events on specific branches of interest in a reference species tree. Such approaches do not account for uncertainty in the gene tree and reconciliation, or do so only heuristically. The effects of these simplifications on the inference of ancient WGDs are unclear. In particular the effects of variation in gene duplication and loss rates across the species tree have not been considered. Here, we developed a full probabilistic approach for phylogenomic reconciliation based WGD inference, accounting for both gene tree and reconciliation uncertainty using a method based on the principle of amalgamated likelihood estimation. The model and methods are implemented in a maximum likelihood and Bayesian setting and account for variation of duplication and loss rate across the species tree, using methods inspired by phylogenetic divergence time estimation. We applied our newly developed framework to ancient WGDs in land plants and investigate the effects of duplication and loss rate variation on reconciliation and gene count based assessment of these earlier proposed WGDs

    Vertebrate phylogenomics and gene family evolution

    Get PDF
    This thesis is about 2 topics; the evolution of gene families by the birth-death process of gene duplication and gene loss, and phylogenetic inference. It is a central theme that these two processes are intimately associated - the phylogenies of gene families (of any gene) are shaped by the processes of gene duplication and gene loss, as much as by the processes of speciation and extinction occurring among the species the gene is evolving in. This has two results. Firstly, that we need to know, or assume, something about the processes of gene duplication and loss to correctly understand the pattern of speciation, or cladogenesis, in a group of organisms. Secondly, that we need to know, or assume, something about this pattern if we are to fully appreciate the effect of gene duplication and loss on a gene family phylogeny.The main part of this thesis investigates the use of reconciled tree methods in unravelling species phylogeny and the evolution of gene families. Part of this investigation involves placing reconciled tree methods (and the use of these methods to infer species phylogeny, known as gene tree parsimony), in the context of some related methods: supertree methods and "simultaneous analysis" of combined data. Two empirical studies complete this part of the thesis - one attempting to infer the higher-level phylogeny of vertebrates using gene tree parsimony, and another focusing on a lower taxonomic level, on primate phylogeny. This chapter attempts an integrated study of gene duplication and species phylogeny, which uses information about gene duplication to help date evolutionary events.Despite the close relationship between gene duplication and speciation on phylogenies, it is possible to study gene duplication independently. If we restrict ourselves to genes sampled from a single genome, gene family trees represent gene duplications and gene losses occurring during the history of a single species, so the complication of speciation and extinction is eliminated. By realising that the processes of gene duplication and loss in these trees are analogous to the processes of speciation and extinction in species phylogenies, we can harness a toolkit of methods developed for more traditional phylogenies to study these molecular processes. Two such methods are models of cladistic tree shape and birth-death models, which allow the first estimates of the rate of gene loss

    A Bayesian Approach for Fast and Accurate Gene Tree Reconstruction

    Get PDF
    Supplementary tables S1, sections 2.1–2.3, and figures S1–S11 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2–3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.National Science Foundation (U.S.) (CAREER award NSF 0644282

    The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the cretaceous-paleogene (K-Pg) mass extinction event

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record. The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic.Swiss National Science FoundationUniversity of ZurichNatural Sciences and Engineering Research Council of CanadaNational Environment Research CouncilFonds de la Recherche Scientifique of Belgiu

    Simultaneous Reconstruction of Duplication Episodes and Gene-Species Mappings

    Get PDF
    We present a novel problem, called MetaEC, which aims to infer gene-species assignments in a collection of gene trees with missing labels by minimizing the size of duplication episode clustering (EC). This problem is particularly relevant in metagenomics, where incomplete data often poses a challenge in the accurate reconstruction of gene histories. To solve MetaEC, we propose a polynomial time dynamic programming (DP) formulation that verifies the existence of a set of duplication episodes from a predefined set of episode candidates. We then demonstrate how to use DP to design an algorithm that solves MetaEC. Although the algorithm is exponential in the worst case, we introduce a heuristic modification of the algorithm that provides a solution with the knowledge that it is exact. To evaluate our method, we perform two computational experiments on simulated and empirical data containing whole genome duplication events, showing that our algorithm is able to accurately infer the corresponding events
    corecore